ruby/class.c
John Hawthorn 6a62a46c3c Read {max_iv,variation}_count from prime classext
MAX_IV_COUNT is a hint which determines the size of variable width
allocation we should use for a given class. We don't need to scope this
by namespace, if we end up with larger builtin objects on some
namespaces that isn't a user-visible problem, just extra memory use.

Similarly variation_count is used to track if a given object has had too
many branches in shapes it has used, and to use too_complex when that
happens. That's also just a hint, so we can use the same value across
namespaces without it being visible to users.

Previously variation_count was being incremented (written to) on the
RCLASS_EXT_READABLE ext, which seems incorrect if we wanted it to be
different across namespaces
2025-05-29 16:02:07 -04:00

3147 lines
89 KiB
C

/**********************************************************************
class.c -
$Author$
created at: Tue Aug 10 15:05:44 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
/*!
* \addtogroup class
* \{
*/
#include "ruby/internal/config.h"
#include <ctype.h>
#include "constant.h"
#include "debug_counter.h"
#include "id_table.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/eval.h"
#include "internal/hash.h"
#include "internal/namespace.h"
#include "internal/object.h"
#include "internal/string.h"
#include "internal/variable.h"
#include "ruby/st.h"
#include "vm_core.h"
#include "yjit.h"
/* Flags of T_CLASS
*
* 0: RCLASS_IS_ROOT
* The class has been added to the VM roots. Will always be marked and pinned.
* This is done for classes defined from C to allow storing them in global variables.
* 1: RUBY_FL_SINGLETON
* This class is a singleton class.
* 2: RCLASS_PRIME_CLASSEXT_PRIME_WRITABLE
* This class's prime classext is the only classext and writable from any namespaces.
* If unset, the prime classext is writable only from the root namespace.
* 3: RCLASS_IS_INITIALIZED
* Class has been initialized.
*/
/* Flags of T_ICLASS
*
* 2: RCLASS_PRIME_CLASSEXT_PRIME_WRITABLE
* This module's prime classext is the only classext and writable from any namespaces.
* If unset, the prime classext is writable only from the root namespace.
*/
/* Flags of T_MODULE
*
* 0: RCLASS_IS_ROOT
* The class has been added to the VM roots. Will always be marked and pinned.
* This is done for classes defined from C to allow storing them in global variables.
* 1: RMODULE_IS_REFINEMENT
* Module is used for refinements.
* 2: RCLASS_PRIME_CLASSEXT_PRIME_WRITABLE
* This module's prime classext is the only classext and writable from any namespaces.
* If unset, the prime classext is writable only from the root namespace.
* 3: RCLASS_IS_INITIALIZED
* Module has been initialized.
*/
#define METACLASS_OF(k) RBASIC(k)->klass
#define SET_METACLASS_OF(k, cls) RBASIC_SET_CLASS(k, cls)
RUBY_EXTERN rb_serial_t ruby_vm_global_cvar_state;
struct duplicate_id_tbl_data {
struct rb_id_table *tbl;
VALUE klass;
};
static enum rb_id_table_iterator_result
duplicate_classext_id_table_i(ID key, VALUE value, void *data)
{
struct rb_id_table *tbl = (struct rb_id_table *)data;
rb_id_table_insert(tbl, key, value);
return ID_TABLE_CONTINUE;
}
static enum rb_id_table_iterator_result
duplicate_classext_m_tbl_i(ID key, VALUE value, void *data)
{
struct duplicate_id_tbl_data *arg = (struct duplicate_id_tbl_data *)data;
rb_method_entry_t *me = (rb_method_entry_t *)value;
rb_method_table_insert0(arg->klass, arg->tbl, key, me, false);
return ID_TABLE_CONTINUE;
}
static struct rb_id_table *
duplicate_classext_m_tbl(struct rb_id_table *orig, VALUE klass, bool init_missing)
{
struct rb_id_table *tbl;
if (!orig) {
if (init_missing)
return rb_id_table_create(0);
else
return NULL;
}
tbl = rb_id_table_create(rb_id_table_size(orig));
struct duplicate_id_tbl_data data = {
.tbl = tbl,
.klass = klass,
};
rb_id_table_foreach(orig, duplicate_classext_m_tbl_i, &data);
return tbl;
}
static struct rb_id_table *
duplicate_classext_id_table(struct rb_id_table *orig, bool init_missing)
{
struct rb_id_table *tbl;
if (!orig) {
if (init_missing)
return rb_id_table_create(0);
else
return NULL;
}
tbl = rb_id_table_create(rb_id_table_size(orig));
rb_id_table_foreach(orig, duplicate_classext_id_table_i, tbl);
return tbl;
}
static rb_const_entry_t *
duplicate_classext_const_entry(rb_const_entry_t *src, VALUE klass)
{
// See also: setup_const_entry (variable.c)
rb_const_entry_t *dst = ZALLOC(rb_const_entry_t);
dst->flag = src->flag;
dst->line = src->line;
RB_OBJ_WRITE(klass, &dst->value, src->value);
RB_OBJ_WRITE(klass, &dst->file, src->file);
return dst;
}
static enum rb_id_table_iterator_result
duplicate_classext_const_tbl_i(ID key, VALUE value, void *data)
{
struct duplicate_id_tbl_data *arg = (struct duplicate_id_tbl_data *)data;
rb_const_entry_t *entry = duplicate_classext_const_entry((rb_const_entry_t *)value, arg->klass);
rb_id_table_insert(arg->tbl, key, (VALUE)entry);
return ID_TABLE_CONTINUE;
}
static struct rb_id_table *
duplicate_classext_const_tbl(struct rb_id_table *src, VALUE klass)
{
struct rb_id_table *dst;
if (!src)
return NULL;
dst = rb_id_table_create(rb_id_table_size(src));
struct duplicate_id_tbl_data data = {
.tbl = dst,
.klass = klass,
};
rb_id_table_foreach(src, duplicate_classext_const_tbl_i, (void *)&data);
return dst;
}
static VALUE
namespace_subclasses_tbl_key(const rb_namespace_t *ns)
{
if (!ns){
return 0;
}
return (VALUE)ns->ns_id;
}
static void
duplicate_classext_subclasses(rb_classext_t *orig, rb_classext_t *copy)
{
rb_subclass_anchor_t *anchor, *orig_anchor;
rb_subclass_entry_t *head, *cur, *cdr, *entry, *first = NULL;
rb_ns_subclasses_t *ns_subclasses;
struct st_table *tbl;
if (RCLASSEXT_SUBCLASSES(orig)) {
orig_anchor = RCLASSEXT_SUBCLASSES(orig);
ns_subclasses = orig_anchor->ns_subclasses;
tbl = ((rb_ns_subclasses_t *)ns_subclasses)->tbl;
anchor = ZALLOC(rb_subclass_anchor_t);
anchor->ns_subclasses = rb_ns_subclasses_ref_inc(ns_subclasses);
head = ZALLOC(rb_subclass_entry_t);
anchor->head = head;
RCLASSEXT_SUBCLASSES(copy) = anchor;
cur = head;
entry = orig_anchor->head;
RUBY_ASSERT(!entry->klass);
// The head entry has NULL klass always. See rb_class_foreach_subclass().
entry = entry->next;
while (entry) {
if (rb_objspace_garbage_object_p(entry->klass)) {
entry = entry->next;
continue;
}
cdr = ZALLOC(rb_subclass_entry_t);
cdr->klass = entry->klass;
cdr->prev = cur;
cur->next = cdr;
if (!first) {
VALUE ns_id = namespace_subclasses_tbl_key(RCLASSEXT_NS(copy));
first = cdr;
st_insert(tbl, ns_id, (st_data_t)first);
}
cur = cdr;
entry = entry->next;
}
}
if (RCLASSEXT_NS_SUPER_SUBCLASSES(orig))
RCLASSEXT_NS_SUPER_SUBCLASSES(copy) = rb_ns_subclasses_ref_inc(RCLASSEXT_NS_SUPER_SUBCLASSES(orig));
if (RCLASSEXT_NS_MODULE_SUBCLASSES(orig))
RCLASSEXT_NS_MODULE_SUBCLASSES(copy) = rb_ns_subclasses_ref_inc(RCLASSEXT_NS_MODULE_SUBCLASSES(orig));
}
static void
class_duplicate_iclass_classext(VALUE iclass, rb_classext_t *mod_ext, const rb_namespace_t *ns)
{
RUBY_ASSERT(RB_TYPE_P(iclass, T_ICLASS));
rb_classext_t *src = RCLASS_EXT_PRIME(iclass);
rb_classext_t *ext = RCLASS_EXT_TABLE_LOOKUP_INTERNAL(iclass, ns);
int first_set = 0;
if (ext) {
// iclass classext for the ns is only for cc/callable_m_tbl if it's created earlier than module's one
rb_invalidate_method_caches(RCLASSEXT_CALLABLE_M_TBL(ext), RCLASSEXT_CC_TBL(ext));
}
ext = ZALLOC(rb_classext_t);
RCLASSEXT_NS(ext) = ns;
RCLASSEXT_SUPER(ext) = RCLASSEXT_SUPER(src);
// See also: rb_include_class_new()
if (RCLASSEXT_ICLASS_IS_ORIGIN(src) && !RCLASSEXT_ICLASS_ORIGIN_SHARED_MTBL(src)) {
RCLASSEXT_M_TBL(ext) = duplicate_classext_m_tbl(RCLASSEXT_M_TBL(src), iclass, true);
}
else {
RCLASSEXT_M_TBL(ext) = RCLASSEXT_M_TBL(mod_ext);
}
RCLASSEXT_CONST_TBL(ext) = RCLASSEXT_CONST_TBL(mod_ext);
RCLASSEXT_CVC_TBL(ext) = RCLASSEXT_CVC_TBL(mod_ext);
// Those are cache and should be recreated when methods are called
// RCLASSEXT_CALLABLE_M_TBL(ext) = NULL;
// RCLASSEXT_CC_TBL(ext) = NULL;
// subclasses, namespace_super_subclasses_tbl, namespace_module_subclasses_tbl
duplicate_classext_subclasses(src, ext);
RCLASSEXT_SET_ORIGIN(ext, iclass, RCLASSEXT_ORIGIN(src));
RCLASSEXT_ICLASS_IS_ORIGIN(ext) = RCLASSEXT_ICLASS_IS_ORIGIN(src);
RCLASSEXT_ICLASS_ORIGIN_SHARED_MTBL(ext) = RCLASSEXT_ICLASS_ORIGIN_SHARED_MTBL(src);
RCLASSEXT_SET_INCLUDER(ext, iclass, RCLASSEXT_INCLUDER(src));
first_set = RCLASS_SET_NAMESPACE_CLASSEXT(iclass, ns, ext);
if (first_set) {
RCLASS_SET_PRIME_CLASSEXT_WRITABLE(iclass, false);
}
}
rb_classext_t *
rb_class_duplicate_classext(rb_classext_t *orig, VALUE klass, const rb_namespace_t *ns)
{
VM_ASSERT(RB_TYPE_P(klass, T_CLASS) || RB_TYPE_P(klass, T_MODULE) || RB_TYPE_P(klass, T_ICLASS));
rb_classext_t *ext = ZALLOC(rb_classext_t);
bool dup_iclass = RB_TYPE_P(klass, T_MODULE) ? true : false;
RCLASSEXT_NS(ext) = ns;
RCLASSEXT_SUPER(ext) = RCLASSEXT_SUPER(orig);
RCLASSEXT_M_TBL(ext) = duplicate_classext_m_tbl(RCLASSEXT_M_TBL(orig), klass, dup_iclass);
// TODO: consider shapes for performance
if (RCLASSEXT_FIELDS(orig)) {
RUBY_ASSERT(!RB_TYPE_P(klass, T_ICLASS));
RCLASSEXT_FIELDS(ext) = (VALUE *)st_copy((st_table *)RCLASSEXT_FIELDS(orig));
rb_autoload_copy_table_for_namespace((st_table *)RCLASSEXT_FIELDS(ext), ns);
}
else {
if (!RB_TYPE_P(klass, T_ICLASS)) {
RCLASSEXT_FIELDS(ext) = (VALUE *)st_init_numtable();
}
}
if (RCLASSEXT_SHARED_CONST_TBL(orig)) {
RCLASSEXT_CONST_TBL(ext) = RCLASSEXT_CONST_TBL(orig);
RCLASSEXT_SHARED_CONST_TBL(ext) = true;
}
else {
RCLASSEXT_CONST_TBL(ext) = duplicate_classext_const_tbl(RCLASSEXT_CONST_TBL(orig), klass);
RCLASSEXT_SHARED_CONST_TBL(ext) = false;
}
/*
* callable_m_tbl is for `super` chain, and entries will be created when the super chain is called.
* so initially, it can be NULL and let it be created lazily.
* RCLASSEXT_CALLABLE_M_TBL(ext) = NULL;
*
* cc_tbl is for method inline cache, and method calls from different namespaces never occur on
* the same code, so the copied classext should have a different cc_tbl from the prime one.
* RCLASSEXT_CC_TBL(copy) = NULL
*/
RCLASSEXT_CVC_TBL(ext) = duplicate_classext_id_table(RCLASSEXT_CVC_TBL(orig), dup_iclass);
// subclasses, subclasses_index
duplicate_classext_subclasses(orig, ext);
RCLASSEXT_SET_ORIGIN(ext, klass, RCLASSEXT_ORIGIN(orig));
/*
* Members not copied to namespace classext values
* * refined_class
* * as.class.allocator / as.singleton_class.attached_object
* * includer
* * max IV count
* * variation count
*/
RCLASSEXT_PERMANENT_CLASSPATH(ext) = RCLASSEXT_PERMANENT_CLASSPATH(orig);
RCLASSEXT_CLONED(ext) = RCLASSEXT_CLONED(orig);
RCLASSEXT_CLASSPATH(ext) = RCLASSEXT_CLASSPATH(orig);
/* For the usual T_CLASS/T_MODULE, iclass flags are always false */
if (dup_iclass) {
VALUE iclass;
/*
* ICLASS has the same m_tbl/const_tbl/cvc_tbl with the included module.
* So the module's classext is copied, its tables should be also referred
* by the ICLASS's classext for the namespace.
*/
rb_subclass_anchor_t *anchor = RCLASSEXT_SUBCLASSES(ext);
rb_subclass_entry_t *subclass_entry = anchor->head;
while (subclass_entry) {
if (subclass_entry->klass && RB_TYPE_P(subclass_entry->klass, T_ICLASS)) {
iclass = subclass_entry->klass;
if (RBASIC_CLASS(iclass) == klass) {
// Is the subclass an ICLASS including this module into another class
// If so we need to re-associate it under our namespace with the new ext
class_duplicate_iclass_classext(iclass, ext, ns);
}
}
subclass_entry = subclass_entry->next;
}
}
return ext;
}
void
rb_class_ensure_writable(VALUE klass)
{
VM_ASSERT(RB_TYPE_P(klass, T_CLASS) || RB_TYPE_P(klass, T_MODULE) || RB_TYPE_P(klass, T_ICLASS));
RCLASS_EXT_WRITABLE(klass);
}
struct class_classext_foreach_arg {
rb_class_classext_foreach_callback_func *func;
void * callback_arg;
};
static int
class_classext_foreach_i(st_data_t key, st_data_t value, st_data_t arg)
{
struct class_classext_foreach_arg *foreach_arg = (struct class_classext_foreach_arg *)arg;
rb_class_classext_foreach_callback_func *func = foreach_arg->func;
func((rb_classext_t *)value, false, (VALUE)key, foreach_arg->callback_arg);
return ST_CONTINUE;
}
void
rb_class_classext_foreach(VALUE klass, rb_class_classext_foreach_callback_func *func, void *arg)
{
st_table *tbl = RCLASS(klass)->ns_classext_tbl;
struct class_classext_foreach_arg foreach_arg;
if (tbl) {
foreach_arg.func = func;
foreach_arg.callback_arg = arg;
rb_st_foreach(tbl, class_classext_foreach_i, (st_data_t)&foreach_arg);
}
func(RCLASS_EXT_PRIME(klass), true, (VALUE)NULL, arg);
}
VALUE
rb_class_super_of(VALUE klass)
{
return RCLASS_SUPER(klass);
}
VALUE
rb_class_singleton_p(VALUE klass)
{
return RCLASS_SINGLETON_P(klass);
}
unsigned char
rb_class_variation_count(VALUE klass)
{
return RCLASS_VARIATION_COUNT(klass);
}
static void
push_subclass_entry_to_list(VALUE super, VALUE klass, bool is_module)
{
rb_subclass_entry_t *entry, *head;
rb_subclass_anchor_t *anchor;
rb_ns_subclasses_t *ns_subclasses;
struct st_table *tbl;
const rb_namespace_t *ns = rb_current_namespace();
entry = ZALLOC(rb_subclass_entry_t);
entry->klass = klass;
RB_VM_LOCKING() {
anchor = RCLASS_WRITABLE_SUBCLASSES(super);
VM_ASSERT(anchor);
ns_subclasses = (rb_ns_subclasses_t *)anchor->ns_subclasses;
VM_ASSERT(ns_subclasses);
tbl = ns_subclasses->tbl;
VM_ASSERT(tbl);
head = anchor->head;
if (head->next) {
head->next->prev = entry;
entry->next = head->next;
}
head->next = entry;
entry->prev = head;
st_insert(tbl, namespace_subclasses_tbl_key(ns), (st_data_t)entry);
}
if (is_module) {
RCLASS_WRITE_NS_MODULE_SUBCLASSES(klass, anchor->ns_subclasses);
}
else {
RCLASS_WRITE_NS_SUPER_SUBCLASSES(klass, anchor->ns_subclasses);
}
}
void
rb_class_subclass_add(VALUE super, VALUE klass)
{
if (super && !UNDEF_P(super)) {
push_subclass_entry_to_list(super, klass, false);
}
}
static void
rb_module_add_to_subclasses_list(VALUE module, VALUE iclass)
{
if (module && !UNDEF_P(module)) {
push_subclass_entry_to_list(module, iclass, true);
}
}
void
rb_class_remove_subclass_head(VALUE klass) // TODO: check this is still used and required
{
rb_classext_t *ext = RCLASS_EXT_WRITABLE(klass);
rb_class_classext_free_subclasses(ext, klass);
}
static struct rb_subclass_entry *
class_get_subclasses_for_ns(struct st_table *tbl, VALUE ns_id)
{
st_data_t value;
if (st_lookup(tbl, (st_data_t)ns_id, &value)) {
return (struct rb_subclass_entry *)value;
}
return NULL;
}
static void
remove_class_from_subclasses(struct st_table *tbl, VALUE ns_id, VALUE klass)
{
rb_subclass_entry_t *entry = class_get_subclasses_for_ns(tbl, ns_id);
bool first_entry = true;
while (entry) {
if (entry->klass == klass) {
rb_subclass_entry_t *prev = entry->prev, *next = entry->next;
if (prev) {
prev->next = next;
}
if (next) {
next->prev = prev;
}
xfree(entry);
if (first_entry) {
if (next) {
st_insert(tbl, ns_id, (st_data_t)next);
}
else {
// no subclass entries in this ns
st_delete(tbl, &ns_id, NULL);
}
}
break;
}
else if (first_entry) {
first_entry = false;
}
entry = entry->next;
}
}
void
rb_class_remove_from_super_subclasses(VALUE klass)
{
rb_classext_t *ext = RCLASS_EXT_WRITABLE(klass);
rb_ns_subclasses_t *ns_subclasses = RCLASSEXT_NS_SUPER_SUBCLASSES(ext);
if (!ns_subclasses) return;
remove_class_from_subclasses(ns_subclasses->tbl, namespace_subclasses_tbl_key(RCLASSEXT_NS(ext)), klass);
rb_ns_subclasses_ref_dec(ns_subclasses);
RCLASSEXT_NS_SUPER_SUBCLASSES(ext) = 0;
}
void
rb_class_remove_from_module_subclasses(VALUE klass)
{
rb_classext_t *ext = RCLASS_EXT_WRITABLE(klass);
rb_ns_subclasses_t *ns_subclasses = RCLASSEXT_NS_MODULE_SUBCLASSES(ext);
if (!ns_subclasses) return;
remove_class_from_subclasses(ns_subclasses->tbl, namespace_subclasses_tbl_key(RCLASSEXT_NS(ext)), klass);
rb_ns_subclasses_ref_dec(ns_subclasses);
RCLASSEXT_NS_MODULE_SUBCLASSES(ext) = 0;
}
void
rb_class_classext_free_subclasses(rb_classext_t *ext, VALUE klass)
{
rb_subclass_anchor_t *anchor = RCLASSEXT_SUBCLASSES(ext);
struct st_table *tbl = anchor->ns_subclasses->tbl;
VALUE ns_id = namespace_subclasses_tbl_key(RCLASSEXT_NS(ext));
rb_subclass_entry_t *next, *entry = anchor->head;
while (entry) {
next = entry->next;
xfree(entry);
entry = next;
}
VM_ASSERT(
rb_ns_subclasses_ref_count(anchor->ns_subclasses) > 0,
"ns_subclasses refcount (%p) %ld", anchor->ns_subclasses, rb_ns_subclasses_ref_count(anchor->ns_subclasses));
st_delete(tbl, &ns_id, NULL);
rb_ns_subclasses_ref_dec(anchor->ns_subclasses);
xfree(anchor);
if (RCLASSEXT_NS_SUPER_SUBCLASSES(ext)) {
rb_ns_subclasses_t *ns_sub = RCLASSEXT_NS_SUPER_SUBCLASSES(ext);
remove_class_from_subclasses(ns_sub->tbl, ns_id, klass);
rb_ns_subclasses_ref_dec(ns_sub);
}
if (RCLASSEXT_NS_MODULE_SUBCLASSES(ext)) {
rb_ns_subclasses_t *ns_sub = RCLASSEXT_NS_MODULE_SUBCLASSES(ext);
remove_class_from_subclasses(ns_sub->tbl, ns_id, klass);
rb_ns_subclasses_ref_dec(ns_sub);
}
}
void
rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE arg)
{
rb_subclass_entry_t *tmp;
rb_subclass_entry_t *cur = RCLASS_SUBCLASSES_FIRST(klass);
/* do not be tempted to simplify this loop into a for loop, the order of
operations is important here if `f` modifies the linked list */
while (cur) {
VALUE curklass = cur->klass;
tmp = cur->next;
// do not trigger GC during f, otherwise the cur will become
// a dangling pointer if the subclass is collected
f(curklass, arg);
cur = tmp;
}
}
static void
class_detach_subclasses(VALUE klass, VALUE arg)
{
rb_class_remove_from_super_subclasses(klass);
}
void
rb_class_detach_subclasses(VALUE klass)
{
rb_class_foreach_subclass(klass, class_detach_subclasses, Qnil);
}
static void
class_detach_module_subclasses(VALUE klass, VALUE arg)
{
rb_class_remove_from_module_subclasses(klass);
}
void
rb_class_detach_module_subclasses(VALUE klass)
{
rb_class_foreach_subclass(klass, class_detach_module_subclasses, Qnil);
}
static void
class_switch_superclass(VALUE super, VALUE klass)
{
class_detach_subclasses(klass, Qnil);
rb_class_subclass_add(super, klass);
}
/**
* Allocates a struct RClass for a new class, iclass, or module.
*
* @param type The type of the RClass (T_CLASS, T_ICLASS, or T_MODULE)
* @param klass value for basic.klass of the returned object.
* @return an uninitialized Class/IClass/Module object.
* @pre `klass` must refer to a class or module
*
* @note this function is not Class#allocate.
*/
static VALUE
class_alloc(enum ruby_value_type type, VALUE klass)
{
rb_ns_subclasses_t *ns_subclasses;
rb_subclass_anchor_t *anchor;
const rb_namespace_t *ns = rb_definition_namespace();
size_t alloc_size = sizeof(struct RClass) + sizeof(rb_classext_t);
// class_alloc is supposed to return a new object that is not promoted yet.
// So, we need to avoid GC after NEWOBJ_OF.
// To achieve that, we allocate subclass lists before NEWOBJ_OF.
//
// TODO: Note that this could cause memory leak.
// If NEWOBJ_OF fails with out of memory, these buffers will leak.
ns_subclasses = ZALLOC(rb_ns_subclasses_t);
ns_subclasses->refcount = 1;
ns_subclasses->tbl = st_init_numtable();
anchor = ZALLOC(rb_subclass_anchor_t);
anchor->ns_subclasses = ns_subclasses;
anchor->head = ZALLOC(rb_subclass_entry_t);
RUBY_ASSERT(type == T_CLASS || type == T_ICLASS || type == T_MODULE);
VALUE flags = type;
if (RGENGC_WB_PROTECTED_CLASS) flags |= FL_WB_PROTECTED;
NEWOBJ_OF(obj, struct RClass, klass, flags, alloc_size, 0);
memset(RCLASS_EXT_PRIME(obj), 0, sizeof(rb_classext_t));
/* ZALLOC
RCLASS_CONST_TBL(obj) = 0;
RCLASS_M_TBL(obj) = 0;
RCLASS_FIELDS(obj) = 0;
RCLASS_SET_SUPER((VALUE)obj, 0);
*/
RCLASS_PRIME_NS((VALUE)obj) = ns;
// Classes/Modules defined in user namespaces are
// writable directly because it exists only in a namespace.
RCLASS_SET_PRIME_CLASSEXT_WRITABLE((VALUE)obj, !rb_namespace_available() || NAMESPACE_USER_P(ns) ? true : false);
RCLASS_SET_ORIGIN((VALUE)obj, (VALUE)obj);
RCLASS_SET_REFINED_CLASS((VALUE)obj, Qnil);
RCLASS_SET_SUBCLASSES((VALUE)obj, anchor);
return (VALUE)obj;
}
static VALUE
class_associate_super(VALUE klass, VALUE super, bool init)
{
if (super && !UNDEF_P(super)) {
class_switch_superclass(super, klass);
}
if (init) {
RCLASS_SET_SUPER(klass, super);
}
else {
RCLASS_WRITE_SUPER(klass, super);
}
rb_class_update_superclasses(klass);
return super;
}
VALUE
rb_class_set_super(VALUE klass, VALUE super)
{
return class_associate_super(klass, super, false);
}
static void
class_initialize_method_table(VALUE c)
{
// initialize the prime classext m_tbl
RCLASS_SET_M_TBL_EVEN_WHEN_PROMOTED(c, rb_id_table_create(0));
}
static void
class_clear_method_table(VALUE c)
{
RCLASS_WRITE_M_TBL_EVEN_WHEN_PROMOTED(c, rb_id_table_create(0));
}
/**
* A utility function that wraps class_alloc.
*
* allocates a class and initializes safely.
* @param super a class from which the new class derives.
* @return a class object.
* @pre `super` must be a class.
* @post the metaclass of the new class is Class.
*/
VALUE
rb_class_boot(VALUE super)
{
VALUE klass = class_alloc(T_CLASS, rb_cClass);
// initialize method table prior to class_associate_super()
// because class_associate_super() may cause GC and promote klass
class_initialize_method_table(klass);
class_associate_super(klass, super, true);
if (super && !UNDEF_P(super)) {
rb_class_set_initialized(klass);
}
return (VALUE)klass;
}
static VALUE *
class_superclasses_including_self(VALUE klass)
{
if (RCLASS_SUPERCLASSES_WITH_SELF_P(klass))
return RCLASS_SUPERCLASSES(klass);
size_t depth = RCLASS_SUPERCLASS_DEPTH(klass);
VALUE *superclasses = xmalloc(sizeof(VALUE) * (depth + 1));
if (depth > 0)
memcpy(superclasses, RCLASS_SUPERCLASSES(klass), sizeof(VALUE) * depth);
superclasses[depth] = klass;
return superclasses;
}
void
rb_class_update_superclasses(VALUE klass)
{
VALUE *superclasses;
size_t super_depth;
VALUE super = RCLASS_SUPER(klass);
if (!RB_TYPE_P(klass, T_CLASS)) return;
if (UNDEF_P(super)) return;
// If the superclass array is already built
if (RCLASS_SUPERCLASSES(klass))
return;
// find the proper superclass
while (super != Qfalse && !RB_TYPE_P(super, T_CLASS)) {
super = RCLASS_SUPER(super);
}
// For BasicObject and uninitialized classes, depth=0 and ary=NULL
if (super == Qfalse)
return;
// Sometimes superclasses are set before the full ancestry tree is built
// This happens during metaclass construction
if (super != rb_cBasicObject && !RCLASS_SUPERCLASS_DEPTH(super)) {
rb_class_update_superclasses(super);
// If it is still unset we need to try later
if (!RCLASS_SUPERCLASS_DEPTH(super))
return;
}
super_depth = RCLASS_SUPERCLASS_DEPTH(super);
if (RCLASS_SUPERCLASSES_WITH_SELF_P(super)) {
superclasses = RCLASS_SUPERCLASSES(super);
}
else {
superclasses = class_superclasses_including_self(super);
RCLASS_WRITE_SUPERCLASSES(super, super_depth, superclasses, true);
}
size_t depth = super_depth == RCLASS_MAX_SUPERCLASS_DEPTH ? super_depth : super_depth + 1;
RCLASS_WRITE_SUPERCLASSES(klass, depth, superclasses, false);
}
void
rb_check_inheritable(VALUE super)
{
if (!RB_TYPE_P(super, T_CLASS)) {
rb_raise(rb_eTypeError, "superclass must be an instance of Class (given an instance of %"PRIsVALUE")",
rb_obj_class(super));
}
if (RCLASS_SINGLETON_P(super)) {
rb_raise(rb_eTypeError, "can't make subclass of singleton class");
}
if (super == rb_cClass) {
rb_raise(rb_eTypeError, "can't make subclass of Class");
}
}
VALUE
rb_class_new(VALUE super)
{
Check_Type(super, T_CLASS);
rb_check_inheritable(super);
VALUE klass = rb_class_boot(super);
if (super != rb_cObject && super != rb_cBasicObject) {
RCLASS_SET_MAX_IV_COUNT(klass, RCLASS_MAX_IV_COUNT(super));
}
RUBY_ASSERT(getenv("RUBY_NAMESPACE") || RCLASS_PRIME_CLASSEXT_WRITABLE_P(klass));
return klass;
}
VALUE
rb_class_s_alloc(VALUE klass)
{
return rb_class_boot(0);
}
static void
clone_method(VALUE old_klass, VALUE new_klass, ID mid, const rb_method_entry_t *me)
{
if (me->def->type == VM_METHOD_TYPE_ISEQ) {
rb_cref_t *new_cref;
rb_vm_rewrite_cref(me->def->body.iseq.cref, old_klass, new_klass, &new_cref);
rb_add_method_iseq(new_klass, mid, me->def->body.iseq.iseqptr, new_cref, METHOD_ENTRY_VISI(me));
}
else {
rb_method_entry_set(new_klass, mid, me, METHOD_ENTRY_VISI(me));
}
}
struct clone_method_arg {
VALUE new_klass;
VALUE old_klass;
};
static enum rb_id_table_iterator_result
clone_method_i(ID key, VALUE value, void *data)
{
const struct clone_method_arg *arg = (struct clone_method_arg *)data;
clone_method(arg->old_klass, arg->new_klass, key, (const rb_method_entry_t *)value);
return ID_TABLE_CONTINUE;
}
struct clone_const_arg {
VALUE klass;
struct rb_id_table *tbl;
};
static int
clone_const(ID key, const rb_const_entry_t *ce, struct clone_const_arg *arg)
{
rb_const_entry_t *nce = ALLOC(rb_const_entry_t);
MEMCPY(nce, ce, rb_const_entry_t, 1);
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->value);
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->file);
rb_id_table_insert(arg->tbl, key, (VALUE)nce);
return ID_TABLE_CONTINUE;
}
static enum rb_id_table_iterator_result
clone_const_i(ID key, VALUE value, void *data)
{
return clone_const(key, (const rb_const_entry_t *)value, data);
}
static void
class_init_copy_check(VALUE clone, VALUE orig)
{
if (orig == rb_cBasicObject) {
rb_raise(rb_eTypeError, "can't copy the root class");
}
if (RCLASS_INITIALIZED_P(clone)) {
rb_raise(rb_eTypeError, "already initialized class");
}
if (RCLASS_SINGLETON_P(orig)) {
rb_raise(rb_eTypeError, "can't copy singleton class");
}
}
struct cvc_table_copy_ctx {
VALUE clone;
struct rb_id_table * new_table;
};
static enum rb_id_table_iterator_result
cvc_table_copy(ID id, VALUE val, void *data)
{
struct cvc_table_copy_ctx *ctx = (struct cvc_table_copy_ctx *)data;
struct rb_cvar_class_tbl_entry * orig_entry;
orig_entry = (struct rb_cvar_class_tbl_entry *)val;
struct rb_cvar_class_tbl_entry *ent;
ent = ALLOC(struct rb_cvar_class_tbl_entry);
ent->class_value = ctx->clone;
ent->cref = orig_entry->cref;
ent->global_cvar_state = orig_entry->global_cvar_state;
rb_id_table_insert(ctx->new_table, id, (VALUE)ent);
RB_OBJ_WRITTEN(ctx->clone, Qundef, ent->cref);
return ID_TABLE_CONTINUE;
}
static void
copy_tables(VALUE clone, VALUE orig)
{
if (RCLASS_CONST_TBL(clone)) {
rb_free_const_table(RCLASS_CONST_TBL(clone));
RCLASS_WRITE_CONST_TBL(clone, 0, false);
}
if (RCLASS_CVC_TBL(orig)) {
struct rb_id_table *rb_cvc_tbl = RCLASS_CVC_TBL(orig);
struct rb_id_table *rb_cvc_tbl_dup = rb_id_table_create(rb_id_table_size(rb_cvc_tbl));
struct cvc_table_copy_ctx ctx;
ctx.clone = clone;
ctx.new_table = rb_cvc_tbl_dup;
rb_id_table_foreach(rb_cvc_tbl, cvc_table_copy, &ctx);
RCLASS_WRITE_CVC_TBL(clone, rb_cvc_tbl_dup);
}
rb_id_table_free(RCLASS_M_TBL(clone));
RCLASS_WRITE_M_TBL_EVEN_WHEN_PROMOTED(clone, 0);
if (!RB_TYPE_P(clone, T_ICLASS)) {
st_data_t id;
rb_fields_tbl_copy(clone, orig);
CONST_ID(id, "__tmp_classpath__");
rb_attr_delete(clone, id);
CONST_ID(id, "__classpath__");
rb_attr_delete(clone, id);
}
if (RCLASS_CONST_TBL(orig)) {
struct clone_const_arg arg;
struct rb_id_table *const_tbl;
arg.tbl = const_tbl = rb_id_table_create(0);
arg.klass = clone;
rb_id_table_foreach(RCLASS_CONST_TBL(orig), clone_const_i, &arg);
RCLASS_WRITE_CONST_TBL(clone, const_tbl, false);
}
}
static bool ensure_origin(VALUE klass);
void
rb_class_set_initialized(VALUE klass)
{
RUBY_ASSERT(RB_TYPE_P(klass, T_CLASS) || RB_TYPE_P(klass, T_MODULE));
FL_SET_RAW(klass, RCLASS_IS_INITIALIZED);
/* no more re-initialization */
}
void
rb_module_check_initializable(VALUE mod)
{
if (RCLASS_INITIALIZED_P(mod)) {
rb_raise(rb_eTypeError, "already initialized module");
}
}
/* :nodoc: */
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
/* Only class or module is valid here, but other classes may enter here and
* only hit an exception on the OBJ_INIT_COPY checks
*/
switch (BUILTIN_TYPE(clone)) {
case T_CLASS:
class_init_copy_check(clone, orig);
break;
case T_MODULE:
rb_module_check_initializable(clone);
break;
default:
break;
}
if (!OBJ_INIT_COPY(clone, orig)) return clone;
RUBY_ASSERT(RB_TYPE_P(orig, T_CLASS) || RB_TYPE_P(orig, T_MODULE));
RUBY_ASSERT(BUILTIN_TYPE(clone) == BUILTIN_TYPE(orig));
rb_class_set_initialized(clone);
/* cloned flag is refer at constant inline cache
* see vm_get_const_key_cref() in vm_insnhelper.c
*/
RCLASS_SET_CLONED(clone, true);
RCLASS_SET_CLONED(orig, true);
if (!RCLASS_SINGLETON_P(CLASS_OF(clone))) {
RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
rb_singleton_class_attached(METACLASS_OF(clone), (VALUE)clone);
}
if (BUILTIN_TYPE(clone) == T_CLASS) {
RCLASS_SET_ALLOCATOR(clone, RCLASS_ALLOCATOR(orig));
}
copy_tables(clone, orig);
if (RCLASS_M_TBL(orig)) {
struct clone_method_arg arg;
arg.old_klass = orig;
arg.new_klass = clone;
// TODO: use class_initialize_method_table() instead of RCLASS_SET_M_TBL_*
// after RCLASS_SET_M_TBL is protected by write barrier
RCLASS_SET_M_TBL_EVEN_WHEN_PROMOTED(clone, rb_id_table_create(0));
rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
}
if (RCLASS_ORIGIN(orig) == orig) {
rb_class_set_super(clone, RCLASS_SUPER(orig));
}
else {
VALUE p = RCLASS_SUPER(orig);
VALUE orig_origin = RCLASS_ORIGIN(orig);
VALUE prev_clone_p = clone;
VALUE origin_stack = rb_ary_hidden_new(2);
VALUE origin[2];
VALUE clone_p = 0;
long origin_len;
int add_subclass;
VALUE clone_origin;
ensure_origin(clone);
clone_origin = RCLASS_ORIGIN(clone);
while (p && p != orig_origin) {
if (BUILTIN_TYPE(p) != T_ICLASS) {
rb_bug("non iclass between module/class and origin");
}
clone_p = class_alloc(T_ICLASS, METACLASS_OF(p));
/* We should set the m_tbl right after allocation before anything
* that can trigger GC to avoid clone_p from becoming old and
* needing to fire write barriers. */
RCLASS_SET_M_TBL(clone_p, RCLASS_M_TBL(p));
rb_class_set_super(prev_clone_p, clone_p);
prev_clone_p = clone_p;
RCLASS_SET_CONST_TBL(clone_p, RCLASS_CONST_TBL(p), false);
if (RB_TYPE_P(clone, T_CLASS)) {
RCLASS_SET_INCLUDER(clone_p, clone);
}
add_subclass = TRUE;
if (p != RCLASS_ORIGIN(p)) {
origin[0] = clone_p;
origin[1] = RCLASS_ORIGIN(p);
rb_ary_cat(origin_stack, origin, 2);
}
else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 &&
RARRAY_AREF(origin_stack, origin_len - 1) == p) {
RCLASS_WRITE_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p);
RICLASS_WRITE_ORIGIN_SHARED_MTBL(clone_p);
rb_ary_resize(origin_stack, origin_len);
add_subclass = FALSE;
}
if (add_subclass) {
rb_module_add_to_subclasses_list(METACLASS_OF(p), clone_p);
}
p = RCLASS_SUPER(p);
}
if (p == orig_origin) {
if (clone_p) {
rb_class_set_super(clone_p, clone_origin);
rb_class_set_super(clone_origin, RCLASS_SUPER(orig_origin));
}
copy_tables(clone_origin, orig_origin);
if (RCLASS_M_TBL(orig_origin)) {
struct clone_method_arg arg;
arg.old_klass = orig;
arg.new_klass = clone;
class_initialize_method_table(clone_origin);
rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg);
}
}
else {
rb_bug("no origin for class that has origin");
}
rb_class_update_superclasses(clone);
}
return clone;
}
VALUE
rb_singleton_class_clone(VALUE obj)
{
return rb_singleton_class_clone_and_attach(obj, Qundef);
}
// Clone and return the singleton class of `obj` if it has been created and is attached to `obj`.
VALUE
rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach)
{
const VALUE klass = METACLASS_OF(obj);
// Note that `rb_singleton_class()` can create situations where `klass` is
// attached to an object other than `obj`. In which case `obj` does not have
// a material singleton class attached yet and there is no singleton class
// to clone.
if (!(RCLASS_SINGLETON_P(klass) && RCLASS_ATTACHED_OBJECT(klass) == obj)) {
// nothing to clone
return klass;
}
else {
/* copy singleton(unnamed) class */
bool klass_of_clone_is_new;
RUBY_ASSERT(RB_TYPE_P(klass, T_CLASS));
VALUE clone = class_alloc(T_CLASS, 0);
if (BUILTIN_TYPE(obj) == T_CLASS) {
klass_of_clone_is_new = true;
RBASIC_SET_CLASS(clone, clone);
}
else {
VALUE klass_metaclass_clone = rb_singleton_class_clone(klass);
// When `METACLASS_OF(klass) == klass_metaclass_clone`, it means the
// recursive call did not clone `METACLASS_OF(klass)`.
klass_of_clone_is_new = (METACLASS_OF(klass) != klass_metaclass_clone);
RBASIC_SET_CLASS(clone, klass_metaclass_clone);
}
// initialize method table before any GC chance
class_initialize_method_table(clone);
rb_class_set_super(clone, RCLASS_SUPER(klass));
rb_fields_tbl_copy(clone, klass);
if (RCLASS_CONST_TBL(klass)) {
struct clone_const_arg arg;
struct rb_id_table *table;
arg.tbl = table = rb_id_table_create(0);
arg.klass = clone;
rb_id_table_foreach(RCLASS_CONST_TBL(klass), clone_const_i, &arg);
RCLASS_SET_CONST_TBL(clone, table, false);
}
if (!UNDEF_P(attach)) {
rb_singleton_class_attached(clone, attach);
}
{
struct clone_method_arg arg;
arg.old_klass = klass;
arg.new_klass = clone;
rb_id_table_foreach(RCLASS_M_TBL(klass), clone_method_i, &arg);
}
if (klass_of_clone_is_new) {
rb_singleton_class_attached(METACLASS_OF(clone), clone);
}
FL_SET(clone, FL_SINGLETON);
return clone;
}
}
void
rb_singleton_class_attached(VALUE klass, VALUE obj)
{
if (RCLASS_SINGLETON_P(klass)) {
RCLASS_SET_ATTACHED_OBJECT(klass, obj);
}
}
/*!
* whether k is a meta^(n)-class of Class class
* @retval 1 if \a k is a meta^(n)-class of Class class (n >= 0)
* @retval 0 otherwise
*/
#define META_CLASS_OF_CLASS_CLASS_P(k) (METACLASS_OF(k) == (k))
static int
rb_singleton_class_has_metaclass_p(VALUE sklass)
{
return RCLASS_ATTACHED_OBJECT(METACLASS_OF(sklass)) == sklass;
}
int
rb_singleton_class_internal_p(VALUE sklass)
{
return (RB_TYPE_P(RCLASS_ATTACHED_OBJECT(sklass), T_CLASS) &&
!rb_singleton_class_has_metaclass_p(sklass));
}
/**
* whether k has a metaclass
* @retval 1 if \a k has a metaclass
* @retval 0 otherwise
*/
#define HAVE_METACLASS_P(k) \
(FL_TEST(METACLASS_OF(k), FL_SINGLETON) && \
rb_singleton_class_has_metaclass_p(k))
/**
* ensures `klass` belongs to its own eigenclass.
* @return the eigenclass of `klass`
* @post `klass` belongs to the returned eigenclass.
* i.e. the attached object of the eigenclass is `klass`.
* @note this macro creates a new eigenclass if necessary.
*/
#define ENSURE_EIGENCLASS(klass) \
(HAVE_METACLASS_P(klass) ? METACLASS_OF(klass) : make_metaclass(klass))
/**
* Creates a metaclass of `klass`
* @param klass a class
* @return created metaclass for the class
* @pre `klass` is a Class object
* @pre `klass` has no singleton class.
* @post the class of `klass` is the returned class.
* @post the returned class is meta^(n+1)-class when `klass` is a meta^(n)-klass for n >= 0
*/
static inline VALUE
make_metaclass(VALUE klass)
{
VALUE super;
VALUE metaclass = rb_class_boot(Qundef);
FL_SET(metaclass, FL_SINGLETON);
rb_singleton_class_attached(metaclass, klass);
if (META_CLASS_OF_CLASS_CLASS_P(klass)) {
SET_METACLASS_OF(klass, metaclass);
SET_METACLASS_OF(metaclass, metaclass);
}
else {
VALUE tmp = METACLASS_OF(klass); /* for a meta^(n)-class klass, tmp is meta^(n)-class of Class class */
SET_METACLASS_OF(klass, metaclass);
SET_METACLASS_OF(metaclass, ENSURE_EIGENCLASS(tmp));
}
super = RCLASS_SUPER(klass);
while (RB_TYPE_P(super, T_ICLASS)) super = RCLASS_SUPER(super);
class_associate_super(metaclass, super ? ENSURE_EIGENCLASS(super) : rb_cClass, true);
rb_class_set_initialized(klass);
// Full class ancestry may not have been filled until we reach here.
rb_class_update_superclasses(METACLASS_OF(metaclass));
return metaclass;
}
/**
* Creates a singleton class for `obj`.
* @pre `obj` must not be an immediate nor a special const.
* @pre `obj` must not be a Class object.
* @pre `obj` has no singleton class.
*/
static inline VALUE
make_singleton_class(VALUE obj)
{
VALUE orig_class = METACLASS_OF(obj);
VALUE klass = rb_class_boot(orig_class);
FL_SET(klass, FL_SINGLETON);
RBASIC_SET_CLASS(obj, klass);
rb_singleton_class_attached(klass, obj);
rb_yjit_invalidate_no_singleton_class(orig_class);
SET_METACLASS_OF(klass, METACLASS_OF(rb_class_real(orig_class)));
return klass;
}
static VALUE
boot_defclass(const char *name, VALUE super)
{
VALUE obj = rb_class_boot(super);
ID id = rb_intern(name);
rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
rb_vm_register_global_object(obj);
return obj;
}
/***********************************************************************
*
* Document-class: Refinement
*
* Refinement is a class of the +self+ (current context) inside +refine+
* statement. It allows to import methods from other modules, see #import_methods.
*/
#if 0 /* for RDoc */
/*
* Document-method: Refinement#import_methods
*
* call-seq:
* import_methods(module, ...) -> self
*
* Imports methods from modules. Unlike Module#include,
* Refinement#import_methods copies methods and adds them into the refinement,
* so the refinement is activated in the imported methods.
*
* Note that due to method copying, only methods defined in Ruby code can be imported.
*
* module StrUtils
* def indent(level)
* ' ' * level + self
* end
* end
*
* module M
* refine String do
* import_methods StrUtils
* end
* end
*
* using M
* "foo".indent(3)
* #=> " foo"
*
* module M
* refine String do
* import_methods Enumerable
* # Can't import method which is not defined with Ruby code: Enumerable#drop
* end
* end
*
*/
static VALUE
refinement_import_methods(int argc, VALUE *argv, VALUE refinement)
{
}
# endif
/*!
*--
* \private
* Initializes the world of objects and classes.
*
* At first, the function bootstraps the class hierarchy.
* It initializes the most fundamental classes and their metaclasses.
* - \c BasicObject
* - \c Object
* - \c Module
* - \c Class
* After the bootstrap step, the class hierarchy becomes as the following
* diagram.
*
* \image html boottime-classes.png
*
* Then, the function defines classes, modules and methods as usual.
* \ingroup class
*++
*/
void
Init_class_hierarchy(void)
{
rb_cBasicObject = boot_defclass("BasicObject", 0);
rb_cObject = boot_defclass("Object", rb_cBasicObject);
rb_vm_register_global_object(rb_cObject);
/* resolve class name ASAP for order-independence */
rb_set_class_path_string(rb_cObject, rb_cObject, rb_fstring_lit("Object"));
rb_cModule = boot_defclass("Module", rb_cObject);
rb_cClass = boot_defclass("Class", rb_cModule);
rb_cRefinement = boot_defclass("Refinement", rb_cModule);
#if 0 /* for RDoc */
// we pretend it to be public, otherwise RDoc will ignore it
rb_define_method(rb_cRefinement, "import_methods", refinement_import_methods, -1);
#endif
rb_const_set(rb_cObject, rb_intern_const("BasicObject"), rb_cBasicObject);
RBASIC_SET_CLASS(rb_cClass, rb_cClass);
RBASIC_SET_CLASS(rb_cModule, rb_cClass);
RBASIC_SET_CLASS(rb_cObject, rb_cClass);
RBASIC_SET_CLASS(rb_cRefinement, rb_cClass);
RBASIC_SET_CLASS(rb_cBasicObject, rb_cClass);
ENSURE_EIGENCLASS(rb_cRefinement);
}
/**
* @internal
* Creates a new *singleton class* for an object.
*
* @pre `obj` has no singleton class.
* @note DO NOT USE the function in an extension libraries. Use @ref rb_singleton_class.
* @param obj An object.
* @param unused ignored.
* @return The singleton class of the object.
*/
VALUE
rb_make_metaclass(VALUE obj, VALUE unused)
{
if (BUILTIN_TYPE(obj) == T_CLASS) {
return make_metaclass(obj);
}
else {
return make_singleton_class(obj);
}
}
VALUE
rb_define_class_id(ID id, VALUE super)
{
VALUE klass;
if (!super) super = rb_cObject;
klass = rb_class_new(super);
rb_make_metaclass(klass, METACLASS_OF(super));
return klass;
}
/**
* Calls Class#inherited.
* @param super A class which will be called #inherited.
* NULL means Object class.
* @param klass A Class object which derived from `super`
* @return the value `Class#inherited` returns
* @pre Each of `super` and `klass` must be a `Class` object.
*/
VALUE
rb_class_inherited(VALUE super, VALUE klass)
{
ID inherited;
if (!super) super = rb_cObject;
CONST_ID(inherited, "inherited");
return rb_funcall(super, inherited, 1, klass);
}
VALUE
rb_define_class(const char *name, VALUE super)
{
VALUE klass;
ID id;
const rb_namespace_t *ns = rb_current_namespace();
id = rb_intern(name);
if (NAMESPACE_OPTIONAL_P(ns)) {
return rb_define_class_id_under(ns->ns_object, id, super);
}
if (rb_const_defined(rb_cObject, id)) {
klass = rb_const_get(rb_cObject, id);
if (!RB_TYPE_P(klass, T_CLASS)) {
rb_raise(rb_eTypeError, "%s is not a class (%"PRIsVALUE")",
name, rb_obj_class(klass));
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_raise(rb_eTypeError, "superclass mismatch for class %s", name);
}
/* Class may have been defined in Ruby and not pin-rooted */
rb_vm_register_global_object(klass);
return klass;
}
if (!super) {
rb_raise(rb_eArgError, "no super class for '%s'", name);
}
klass = rb_define_class_id(id, super);
rb_vm_register_global_object(klass);
rb_const_set(rb_cObject, id, klass);
rb_class_inherited(super, klass);
return klass;
}
VALUE
rb_define_class_under(VALUE outer, const char *name, VALUE super)
{
return rb_define_class_id_under(outer, rb_intern(name), super);
}
VALUE
rb_define_class_id_under_no_pin(VALUE outer, ID id, VALUE super)
{
VALUE klass;
if (rb_const_defined_at(outer, id)) {
klass = rb_const_get_at(outer, id);
if (!RB_TYPE_P(klass, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a class"
" (%"PRIsVALUE")",
outer, rb_id2str(id), rb_obj_class(klass));
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_raise(rb_eTypeError, "superclass mismatch for class "
"%"PRIsVALUE"::%"PRIsVALUE""
" (%"PRIsVALUE" is given but was %"PRIsVALUE")",
outer, rb_id2str(id), RCLASS_SUPER(klass), super);
}
return klass;
}
if (!super) {
rb_raise(rb_eArgError, "no super class for '%"PRIsVALUE"::%"PRIsVALUE"'",
rb_class_path(outer), rb_id2str(id));
}
klass = rb_define_class_id(id, super);
rb_set_class_path_string(klass, outer, rb_id2str(id));
rb_const_set(outer, id, klass);
rb_class_inherited(super, klass);
return klass;
}
VALUE
rb_define_class_id_under(VALUE outer, ID id, VALUE super)
{
VALUE klass = rb_define_class_id_under_no_pin(outer, id, super);
rb_vm_register_global_object(klass);
return klass;
}
VALUE
rb_module_s_alloc(VALUE klass)
{
VALUE mod = class_alloc(T_MODULE, klass);
class_initialize_method_table(mod);
return mod;
}
static inline VALUE
module_new(VALUE klass)
{
VALUE mdl = class_alloc(T_MODULE, klass);
class_initialize_method_table(mdl);
return (VALUE)mdl;
}
VALUE
rb_module_new(void)
{
return module_new(rb_cModule);
}
VALUE
rb_refinement_new(void)
{
return module_new(rb_cRefinement);
}
// Kept for compatibility. Use rb_module_new() instead.
VALUE
rb_define_module_id(ID id)
{
return rb_module_new();
}
VALUE
rb_define_module(const char *name)
{
VALUE module;
ID id;
const rb_namespace_t *ns = rb_current_namespace();
id = rb_intern(name);
if (NAMESPACE_OPTIONAL_P(ns)) {
return rb_define_module_id_under(ns->ns_object, id);
}
if (rb_const_defined(rb_cObject, id)) {
module = rb_const_get(rb_cObject, id);
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "%s is not a module (%"PRIsVALUE")",
name, rb_obj_class(module));
}
/* Module may have been defined in Ruby and not pin-rooted */
rb_vm_register_global_object(module);
return module;
}
module = rb_module_new();
rb_vm_register_global_object(module);
rb_const_set(rb_cObject, id, module);
return module;
}
VALUE
rb_define_module_under(VALUE outer, const char *name)
{
return rb_define_module_id_under(outer, rb_intern(name));
}
VALUE
rb_define_module_id_under(VALUE outer, ID id)
{
VALUE module;
if (rb_const_defined_at(outer, id)) {
module = rb_const_get_at(outer, id);
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a module"
" (%"PRIsVALUE")",
outer, rb_id2str(id), rb_obj_class(module));
}
/* Module may have been defined in Ruby and not pin-rooted */
rb_vm_register_global_object(module);
return module;
}
module = rb_module_new();
rb_const_set(outer, id, module);
rb_set_class_path_string(module, outer, rb_id2str(id));
rb_vm_register_global_object(module);
return module;
}
VALUE
rb_include_class_new(VALUE module, VALUE super)
{
VALUE klass = class_alloc(T_ICLASS, rb_cClass);
RCLASS_SET_M_TBL(klass, RCLASS_WRITABLE_M_TBL(module));
RCLASS_SET_ORIGIN(klass, klass);
if (BUILTIN_TYPE(module) == T_ICLASS) {
module = METACLASS_OF(module);
}
RUBY_ASSERT(!RB_TYPE_P(module, T_ICLASS));
if (RCLASS_WRITABLE_CONST_TBL(module)) {
RCLASS_SET_CONST_TBL(klass, RCLASS_WRITABLE_CONST_TBL(module), true);
}
else {
RCLASS_WRITE_CONST_TBL(module, rb_id_table_create(0), false);
RCLASS_SET_CONST_TBL(klass, RCLASS_WRITABLE_CONST_TBL(module), true);
}
RCLASS_SET_CVC_TBL(klass, RCLASS_WRITABLE_CVC_TBL(module));
class_associate_super(klass, super, true);
RBASIC_SET_CLASS(klass, module);
return (VALUE)klass;
}
static int include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super);
static void
ensure_includable(VALUE klass, VALUE module)
{
rb_class_modify_check(klass);
Check_Type(module, T_MODULE);
rb_class_set_initialized(module);
if (!NIL_P(rb_refinement_module_get_refined_class(module))) {
rb_raise(rb_eArgError, "refinement module is not allowed");
}
}
void
rb_include_module(VALUE klass, VALUE module)
{
int changed = 0;
ensure_includable(klass, module);
changed = include_modules_at(klass, RCLASS_ORIGIN(klass), module, TRUE);
if (changed < 0)
rb_raise(rb_eArgError, "cyclic include detected");
if (RB_TYPE_P(klass, T_MODULE)) {
rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES_FIRST(klass);
while (iclass) {
int do_include = 1;
VALUE check_class = iclass->klass;
/* During lazy sweeping, iclass->klass could be a dead object that
* has not yet been swept. */
if (!rb_objspace_garbage_object_p(check_class)) {
while (check_class) {
RUBY_ASSERT(!rb_objspace_garbage_object_p(check_class));
if (RB_TYPE_P(check_class, T_ICLASS) &&
(METACLASS_OF(check_class) == module)) {
do_include = 0;
}
check_class = RCLASS_SUPER(check_class);
}
if (do_include) {
include_modules_at(iclass->klass, RCLASS_ORIGIN(iclass->klass), module, TRUE);
}
}
iclass = iclass->next;
}
}
}
static enum rb_id_table_iterator_result
add_refined_method_entry_i(ID key, VALUE value, void *data)
{
rb_add_refined_method_entry((VALUE)data, key);
return ID_TABLE_CONTINUE;
}
static enum rb_id_table_iterator_result
clear_module_cache_i(ID id, VALUE val, void *data)
{
VALUE klass = (VALUE)data;
rb_clear_method_cache(klass, id);
return ID_TABLE_CONTINUE;
}
static bool
module_in_super_chain(const VALUE klass, VALUE module)
{
struct rb_id_table *const klass_m_tbl = RCLASS_M_TBL(RCLASS_ORIGIN(klass));
if (klass_m_tbl) {
while (module) {
if (klass_m_tbl == RCLASS_M_TBL(module))
return true;
module = RCLASS_SUPER(module);
}
}
return false;
}
// For each ID key in the class constant table, we're going to clear the VM's
// inline constant caches associated with it.
static enum rb_id_table_iterator_result
clear_constant_cache_i(ID id, VALUE value, void *data)
{
rb_clear_constant_cache_for_id(id);
return ID_TABLE_CONTINUE;
}
static int
do_include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super, bool check_cyclic)
{
VALUE p, iclass, origin_stack = 0;
int method_changed = 0;
long origin_len;
VALUE klass_origin = RCLASS_ORIGIN(klass);
VALUE original_klass = klass;
if (check_cyclic && module_in_super_chain(klass, module))
return -1;
while (module) {
int c_seen = FALSE;
int superclass_seen = FALSE;
struct rb_id_table *tbl;
if (klass == c) {
c_seen = TRUE;
}
if (klass_origin != c || search_super) {
/* ignore if the module included already in superclasses for include,
* ignore if the module included before origin class for prepend
*/
for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) {
int type = BUILTIN_TYPE(p);
if (klass_origin == p && !search_super)
break;
if (c == p)
c_seen = TRUE;
if (type == T_ICLASS) {
if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) {
if (!superclass_seen && c_seen) {
c = p; /* move insertion point */
}
goto skip;
}
}
else if (type == T_CLASS) {
superclass_seen = TRUE;
}
}
}
VALUE super_class = RCLASS_SUPER(c);
// invalidate inline method cache
RB_DEBUG_COUNTER_INC(cvar_include_invalidate);
ruby_vm_global_cvar_state++;
tbl = RCLASS_M_TBL(module);
if (tbl && rb_id_table_size(tbl)) {
if (search_super) { // include
if (super_class && !RB_TYPE_P(super_class, T_MODULE)) {
rb_id_table_foreach(tbl, clear_module_cache_i, (void *)super_class);
}
}
else { // prepend
if (!RB_TYPE_P(original_klass, T_MODULE)) {
rb_id_table_foreach(tbl, clear_module_cache_i, (void *)original_klass);
}
}
method_changed = 1;
}
// setup T_ICLASS for the include/prepend module
iclass = rb_include_class_new(module, super_class);
c = rb_class_set_super(c, iclass);
RCLASS_SET_INCLUDER(iclass, klass);
if (module != RCLASS_ORIGIN(module)) {
if (!origin_stack) origin_stack = rb_ary_hidden_new(2);
VALUE origin[2] = {iclass, RCLASS_ORIGIN(module)};
rb_ary_cat(origin_stack, origin, 2);
}
else if (origin_stack && (origin_len = RARRAY_LEN(origin_stack)) > 1 &&
RARRAY_AREF(origin_stack, origin_len - 1) == module) {
RCLASS_WRITE_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), iclass);
RICLASS_WRITE_ORIGIN_SHARED_MTBL(iclass);
rb_ary_resize(origin_stack, origin_len);
}
VALUE m = module;
if (BUILTIN_TYPE(m) == T_ICLASS) m = METACLASS_OF(m);
rb_module_add_to_subclasses_list(m, iclass);
if (BUILTIN_TYPE(klass) == T_MODULE && FL_TEST(klass, RMODULE_IS_REFINEMENT)) {
VALUE refined_class =
rb_refinement_module_get_refined_class(klass);
rb_id_table_foreach(RCLASS_M_TBL(module), add_refined_method_entry_i, (void *)refined_class);
RUBY_ASSERT(BUILTIN_TYPE(c) == T_MODULE);
}
tbl = RCLASS_CONST_TBL(module);
if (tbl && rb_id_table_size(tbl))
rb_id_table_foreach(tbl, clear_constant_cache_i, NULL);
skip:
module = RCLASS_SUPER(module);
}
return method_changed;
}
static int
include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super)
{
return do_include_modules_at(klass, c, module, search_super, true);
}
static enum rb_id_table_iterator_result
move_refined_method(ID key, VALUE value, void *data)
{
rb_method_entry_t *me = (rb_method_entry_t *)value;
if (me->def->type == VM_METHOD_TYPE_REFINED) {
VALUE klass = (VALUE)data;
struct rb_id_table *tbl = RCLASS_WRITABLE_M_TBL(klass);
if (me->def->body.refined.orig_me) {
const rb_method_entry_t *orig_me = me->def->body.refined.orig_me, *new_me;
RB_OBJ_WRITE(me, &me->def->body.refined.orig_me, NULL);
new_me = rb_method_entry_clone(me);
rb_method_table_insert(klass, tbl, key, new_me);
rb_method_entry_copy(me, orig_me);
return ID_TABLE_CONTINUE;
}
else {
rb_method_table_insert(klass, tbl, key, me);
return ID_TABLE_DELETE;
}
}
else {
return ID_TABLE_CONTINUE;
}
}
static enum rb_id_table_iterator_result
cache_clear_refined_method(ID key, VALUE value, void *data)
{
rb_method_entry_t *me = (rb_method_entry_t *) value;
if (me->def->type == VM_METHOD_TYPE_REFINED && me->def->body.refined.orig_me) {
VALUE klass = (VALUE)data;
rb_clear_method_cache(klass, me->called_id);
}
// Refined method entries without an orig_me is going to stay in the method
// table of klass, like before the move, so no need to clear the cache.
return ID_TABLE_CONTINUE;
}
static bool
ensure_origin(VALUE klass)
{
VALUE origin = RCLASS_ORIGIN(klass);
if (origin == klass) {
origin = class_alloc(T_ICLASS, klass);
RCLASS_SET_M_TBL(origin, RCLASS_M_TBL(klass));
rb_class_set_super(origin, RCLASS_SUPER(klass));
rb_class_set_super(klass, origin); // writes origin into RCLASS_SUPER(klass)
RCLASS_WRITE_ORIGIN(klass, origin);
class_clear_method_table(klass);
rb_id_table_foreach(RCLASS_M_TBL(origin), cache_clear_refined_method, (void *)klass);
rb_id_table_foreach(RCLASS_M_TBL(origin), move_refined_method, (void *)klass);
return true;
}
return false;
}
void
rb_prepend_module(VALUE klass, VALUE module)
{
int changed;
bool klass_had_no_origin;
ensure_includable(klass, module);
if (module_in_super_chain(klass, module))
rb_raise(rb_eArgError, "cyclic prepend detected");
klass_had_no_origin = ensure_origin(klass);
changed = do_include_modules_at(klass, klass, module, FALSE, false);
RUBY_ASSERT(changed >= 0); // already checked for cyclic prepend above
if (changed) {
rb_vm_check_redefinition_by_prepend(klass);
}
if (RB_TYPE_P(klass, T_MODULE)) {
rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES_FIRST(klass);
VALUE klass_origin = RCLASS_ORIGIN(klass);
struct rb_id_table *klass_m_tbl = RCLASS_M_TBL(klass);
struct rb_id_table *klass_origin_m_tbl = RCLASS_M_TBL(klass_origin);
while (iclass) {
/* During lazy sweeping, iclass->klass could be a dead object that
* has not yet been swept. */
if (!rb_objspace_garbage_object_p(iclass->klass)) {
const VALUE subclass = iclass->klass;
if (klass_had_no_origin && klass_origin_m_tbl == RCLASS_M_TBL(subclass)) {
// backfill an origin iclass to handle refinements and future prepends
rb_id_table_foreach(RCLASS_M_TBL(subclass), clear_module_cache_i, (void *)subclass);
RCLASS_WRITE_M_TBL_EVEN_WHEN_PROMOTED(subclass, klass_m_tbl);
VALUE origin = rb_include_class_new(klass_origin, RCLASS_SUPER(subclass));
rb_class_set_super(subclass, origin);
RCLASS_SET_INCLUDER(origin, RCLASS_INCLUDER(subclass));
RCLASS_WRITE_ORIGIN(subclass, origin);
RICLASS_SET_ORIGIN_SHARED_MTBL(origin);
}
include_modules_at(subclass, subclass, module, FALSE);
}
iclass = iclass->next;
}
}
}
/*
* call-seq:
* mod.included_modules -> array
*
* Returns the list of modules included or prepended in <i>mod</i>
* or one of <i>mod</i>'s ancestors.
*
* module Sub
* end
*
* module Mixin
* prepend Sub
* end
*
* module Outer
* include Mixin
* end
*
* Mixin.included_modules #=> [Sub]
* Outer.included_modules #=> [Sub, Mixin]
*/
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
VALUE origin = RCLASS_ORIGIN(mod);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) {
VALUE m = METACLASS_OF(p);
if (RB_TYPE_P(m, T_MODULE))
rb_ary_push(ary, m);
}
}
return ary;
}
/*
* call-seq:
* mod.include?(module) -> true or false
*
* Returns <code>true</code> if <i>module</i> is included
* or prepended in <i>mod</i> or one of <i>mod</i>'s ancestors.
*
* module A
* end
* class B
* include A
* end
* class C < B
* end
* B.include?(A) #=> true
* C.include?(A) #=> true
* A.include?(A) #=> false
*/
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS && !RICLASS_IS_ORIGIN_P(p)) {
if (METACLASS_OF(p) == mod2) return Qtrue;
}
}
return Qfalse;
}
/*
* call-seq:
* mod.ancestors -> array
*
* Returns a list of modules included/prepended in <i>mod</i>
* (including <i>mod</i> itself).
*
* module Mod
* include Math
* include Comparable
* prepend Enumerable
* end
*
* Mod.ancestors #=> [Enumerable, Mod, Comparable, Math]
* Math.ancestors #=> [Math]
* Enumerable.ancestors #=> [Enumerable]
*/
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
VALUE refined_class = Qnil;
if (BUILTIN_TYPE(mod) == T_MODULE && FL_TEST(mod, RMODULE_IS_REFINEMENT)) {
refined_class = rb_refinement_module_get_refined_class(mod);
}
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (p == refined_class) break;
if (p != RCLASS_ORIGIN(p)) continue;
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, METACLASS_OF(p));
}
else {
rb_ary_push(ary, p);
}
}
return ary;
}
struct subclass_traverse_data
{
VALUE buffer;
long count;
long maxcount;
bool immediate_only;
};
static void
class_descendants_recursive(VALUE klass, VALUE v)
{
struct subclass_traverse_data *data = (struct subclass_traverse_data *) v;
if (BUILTIN_TYPE(klass) == T_CLASS && !RCLASS_SINGLETON_P(klass)) {
if (data->buffer && data->count < data->maxcount && !rb_objspace_garbage_object_p(klass)) {
// assumes that this does not cause GC as long as the length does not exceed the capacity
rb_ary_push(data->buffer, klass);
}
data->count++;
if (!data->immediate_only) {
rb_class_foreach_subclass(klass, class_descendants_recursive, v);
}
}
else {
rb_class_foreach_subclass(klass, class_descendants_recursive, v);
}
}
static VALUE
class_descendants(VALUE klass, bool immediate_only)
{
struct subclass_traverse_data data = { Qfalse, 0, -1, immediate_only };
// estimate the count of subclasses
rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data);
// the following allocation may cause GC which may change the number of subclasses
data.buffer = rb_ary_new_capa(data.count);
data.maxcount = data.count;
data.count = 0;
size_t gc_count = rb_gc_count();
// enumerate subclasses
rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data);
if (gc_count != rb_gc_count()) {
rb_bug("GC must not occur during the subclass iteration of Class#descendants");
}
return data.buffer;
}
/*
* call-seq:
* subclasses -> array
*
* Returns an array of classes where the receiver is the
* direct superclass of the class, excluding singleton classes.
* The order of the returned array is not defined.
*
* class A; end
* class B < A; end
* class C < B; end
* class D < A; end
*
* A.subclasses #=> [D, B]
* B.subclasses #=> [C]
* C.subclasses #=> []
*
* Anonymous subclasses (not associated with a constant) are
* returned, too:
*
* c = Class.new(A)
* A.subclasses # => [#<Class:0x00007f003c77bd78>, D, B]
*
* Note that the parent does not hold references to subclasses
* and doesn't prevent them from being garbage collected. This
* means that the subclass might disappear when all references
* to it are dropped:
*
* # drop the reference to subclass, it can be garbage-collected now
* c = nil
*
* A.subclasses
* # It can be
* # => [#<Class:0x00007f003c77bd78>, D, B]
* # ...or just
* # => [D, B]
* # ...depending on whether garbage collector was run
*/
VALUE
rb_class_subclasses(VALUE klass)
{
return class_descendants(klass, true);
}
/*
* call-seq:
* attached_object -> object
*
* Returns the object for which the receiver is the singleton class.
*
* Raises an TypeError if the class is not a singleton class.
*
* class Foo; end
*
* Foo.singleton_class.attached_object #=> Foo
* Foo.attached_object #=> TypeError: `Foo' is not a singleton class
* Foo.new.singleton_class.attached_object #=> #<Foo:0x000000010491a370>
* TrueClass.attached_object #=> TypeError: `TrueClass' is not a singleton class
* NilClass.attached_object #=> TypeError: `NilClass' is not a singleton class
*/
VALUE
rb_class_attached_object(VALUE klass)
{
if (!RCLASS_SINGLETON_P(klass)) {
rb_raise(rb_eTypeError, "'%"PRIsVALUE"' is not a singleton class", klass);
}
return RCLASS_ATTACHED_OBJECT(klass);
}
static void
ins_methods_push(st_data_t name, st_data_t ary)
{
rb_ary_push((VALUE)ary, ID2SYM((ID)name));
}
static int
ins_methods_i(st_data_t name, st_data_t type, st_data_t ary)
{
switch ((rb_method_visibility_t)type) {
case METHOD_VISI_UNDEF:
case METHOD_VISI_PRIVATE:
break;
default: /* everything but private */
ins_methods_push(name, ary);
break;
}
return ST_CONTINUE;
}
static int
ins_methods_type_i(st_data_t name, st_data_t type, st_data_t ary, rb_method_visibility_t visi)
{
if ((rb_method_visibility_t)type == visi) {
ins_methods_push(name, ary);
}
return ST_CONTINUE;
}
static int
ins_methods_prot_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_type_i(name, type, ary, METHOD_VISI_PROTECTED);
}
static int
ins_methods_priv_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_type_i(name, type, ary, METHOD_VISI_PRIVATE);
}
static int
ins_methods_pub_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_type_i(name, type, ary, METHOD_VISI_PUBLIC);
}
static int
ins_methods_undef_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_type_i(name, type, ary, METHOD_VISI_UNDEF);
}
struct method_entry_arg {
st_table *list;
int recur;
};
static enum rb_id_table_iterator_result
method_entry_i(ID key, VALUE value, void *data)
{
const rb_method_entry_t *me = (const rb_method_entry_t *)value;
struct method_entry_arg *arg = (struct method_entry_arg *)data;
rb_method_visibility_t type;
if (me->def->type == VM_METHOD_TYPE_REFINED) {
VALUE owner = me->owner;
me = rb_resolve_refined_method(Qnil, me);
if (!me) return ID_TABLE_CONTINUE;
if (!arg->recur && me->owner != owner) return ID_TABLE_CONTINUE;
}
if (!st_is_member(arg->list, key)) {
if (UNDEFINED_METHOD_ENTRY_P(me)) {
type = METHOD_VISI_UNDEF; /* none */
}
else {
type = METHOD_ENTRY_VISI(me);
RUBY_ASSERT(type != METHOD_VISI_UNDEF);
}
st_add_direct(arg->list, key, (st_data_t)type);
}
return ID_TABLE_CONTINUE;
}
static void
add_instance_method_list(VALUE mod, struct method_entry_arg *me_arg)
{
struct rb_id_table *m_tbl = RCLASS_M_TBL(mod);
if (!m_tbl) return;
rb_id_table_foreach(m_tbl, method_entry_i, me_arg);
}
static bool
particular_class_p(VALUE mod)
{
if (!mod) return false;
if (RCLASS_SINGLETON_P(mod)) return true;
if (BUILTIN_TYPE(mod) == T_ICLASS) return true;
return false;
}
static VALUE
class_instance_method_list(int argc, const VALUE *argv, VALUE mod, int obj, int (*func) (st_data_t, st_data_t, st_data_t))
{
VALUE ary;
int recur = TRUE, prepended = 0;
struct method_entry_arg me_arg;
if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
me_arg.list = st_init_numtable();
me_arg.recur = recur;
if (obj) {
for (; particular_class_p(mod); mod = RCLASS_SUPER(mod)) {
add_instance_method_list(mod, &me_arg);
}
}
if (!recur && RCLASS_ORIGIN(mod) != mod) {
mod = RCLASS_ORIGIN(mod);
prepended = 1;
}
for (; mod; mod = RCLASS_SUPER(mod)) {
add_instance_method_list(mod, &me_arg);
if (BUILTIN_TYPE(mod) == T_ICLASS && !prepended) continue;
if (!recur) break;
}
ary = rb_ary_new2(me_arg.list->num_entries);
st_foreach(me_arg.list, func, ary);
st_free_table(me_arg.list);
return ary;
}
/*
* call-seq:
* mod.instance_methods(include_super=true) -> array
*
* Returns an array containing the names of the public and protected instance
* methods in the receiver. For a module, these are the public and protected methods;
* for a class, they are the instance (not singleton) methods. If the optional
* parameter is <code>false</code>, the methods of any ancestors are not included.
*
* module A
* def method1() end
* end
* class B
* include A
* def method2() end
* end
* class C < B
* def method3() end
* end
*
* A.instance_methods(false) #=> [:method1]
* B.instance_methods(false) #=> [:method2]
* B.instance_methods(true).include?(:method1) #=> true
* C.instance_methods(false) #=> [:method3]
* C.instance_methods.include?(:method2) #=> true
*
* Note that method visibility changes in the current class, as well as aliases,
* are considered as methods of the current class by this method:
*
* class C < B
* alias method4 method2
* protected :method2
* end
* C.instance_methods(false).sort #=> [:method2, :method3, :method4]
*/
VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
/*
* call-seq:
* mod.protected_instance_methods(include_super=true) -> array
*
* Returns a list of the protected instance methods defined in
* <i>mod</i>. If the optional parameter is <code>false</code>, the
* methods of any ancestors are not included.
*/
VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
/*
* call-seq:
* mod.private_instance_methods(include_super=true) -> array
*
* Returns a list of the private instance methods defined in
* <i>mod</i>. If the optional parameter is <code>false</code>, the
* methods of any ancestors are not included.
*
* module Mod
* def method1() end
* private :method1
* def method2() end
* end
* Mod.instance_methods #=> [:method2]
* Mod.private_instance_methods #=> [:method1]
*/
VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
/*
* call-seq:
* mod.public_instance_methods(include_super=true) -> array
*
* Returns a list of the public instance methods defined in <i>mod</i>.
* If the optional parameter is <code>false</code>, the methods of
* any ancestors are not included.
*/
VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
/*
* call-seq:
* mod.undefined_instance_methods -> array
*
* Returns a list of the undefined instance methods defined in <i>mod</i>.
* The undefined methods of any ancestors are not included.
*/
VALUE
rb_class_undefined_instance_methods(VALUE mod)
{
VALUE include_super = Qfalse;
return class_instance_method_list(1, &include_super, mod, 0, ins_methods_undef_i);
}
/*
* call-seq:
* obj.methods(regular=true) -> array
*
* Returns a list of the names of public and protected methods of
* <i>obj</i>. This will include all the methods accessible in
* <i>obj</i>'s ancestors.
* If the optional parameter is <code>false</code>, it
* returns an array of <i>obj</i>'s public and protected singleton methods,
* the array will not include methods in modules included in <i>obj</i>.
*
* class Klass
* def klass_method()
* end
* end
* k = Klass.new
* k.methods[0..9] #=> [:klass_method, :nil?, :===,
* # :==~, :!, :eql?
* # :hash, :<=>, :class, :singleton_class]
* k.methods.length #=> 56
*
* k.methods(false) #=> []
* def k.singleton_method; end
* k.methods(false) #=> [:singleton_method]
*
* module M123; def m123; end end
* k.extend M123
* k.methods(false) #=> [:singleton_method]
*/
VALUE
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
{
rb_check_arity(argc, 0, 1);
if (argc > 0 && !RTEST(argv[0])) {
return rb_obj_singleton_methods(argc, argv, obj);
}
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
}
/*
* call-seq:
* obj.protected_methods(all=true) -> array
*
* Returns the list of protected methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
}
/*
* call-seq:
* obj.private_methods(all=true) -> array
*
* Returns the list of private methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
}
/*
* call-seq:
* obj.public_methods(all=true) -> array
*
* Returns the list of public methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
}
/*
* call-seq:
* obj.singleton_methods(all=true) -> array
*
* Returns an array of the names of singleton methods for <i>obj</i>.
* If the optional <i>all</i> parameter is true, the list will include
* methods in modules included in <i>obj</i>.
* Only public and protected singleton methods are returned.
*
* module Other
* def three() end
* end
*
* class Single
* def Single.four() end
* end
*
* a = Single.new
*
* def a.one()
* end
*
* class << a
* include Other
* def two()
* end
* end
*
* Single.singleton_methods #=> [:four]
* a.singleton_methods(false) #=> [:two, :one]
* a.singleton_methods #=> [:two, :one, :three]
*/
VALUE
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
{
VALUE ary, klass, origin;
struct method_entry_arg me_arg;
struct rb_id_table *mtbl;
int recur = TRUE;
if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
if (RCLASS_SINGLETON_P(obj)) {
rb_singleton_class(obj);
}
klass = CLASS_OF(obj);
origin = RCLASS_ORIGIN(klass);
me_arg.list = st_init_numtable();
me_arg.recur = recur;
if (klass && RCLASS_SINGLETON_P(klass)) {
if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
klass = RCLASS_SUPER(klass);
}
if (recur) {
while (klass && (RCLASS_SINGLETON_P(klass) || RB_TYPE_P(klass, T_ICLASS))) {
if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
klass = RCLASS_SUPER(klass);
}
}
ary = rb_ary_new2(me_arg.list->num_entries);
st_foreach(me_arg.list, ins_methods_i, ary);
st_free_table(me_arg.list);
return ary;
}
/*!
* \}
*/
/*!
* \addtogroup defmethod
* \{
*/
#ifdef rb_define_method_id
#undef rb_define_method_id
#endif
void
rb_define_method_id(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, mid, func, argc, METHOD_VISI_PUBLIC);
}
#ifdef rb_define_method
#undef rb_define_method
#endif
void
rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PUBLIC);
}
#ifdef rb_define_protected_method
#undef rb_define_protected_method
#endif
void
rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PROTECTED);
}
#ifdef rb_define_private_method
#undef rb_define_private_method
#endif
void
rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PRIVATE);
}
void
rb_undef_method(VALUE klass, const char *name)
{
rb_add_method(klass, rb_intern(name), VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
}
static enum rb_id_table_iterator_result
undef_method_i(ID name, VALUE value, void *data)
{
VALUE klass = (VALUE)data;
rb_add_method(klass, name, VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
return ID_TABLE_CONTINUE;
}
void
rb_undef_methods_from(VALUE klass, VALUE super)
{
struct rb_id_table *mtbl = RCLASS_M_TBL(super);
if (mtbl) {
rb_id_table_foreach(mtbl, undef_method_i, (void *)klass);
}
}
/*!
* \}
*/
/*!
* \addtogroup class
* \{
*/
static inline VALUE
special_singleton_class_of(VALUE obj)
{
switch (obj) {
case Qnil: return rb_cNilClass;
case Qfalse: return rb_cFalseClass;
case Qtrue: return rb_cTrueClass;
default: return Qnil;
}
}
VALUE
rb_special_singleton_class(VALUE obj)
{
return special_singleton_class_of(obj);
}
/**
* @internal
* Returns the singleton class of `obj`. Creates it if necessary.
*
* @note DO NOT expose the returned singleton class to
* outside of class.c.
* Use @ref rb_singleton_class instead for
* consistency of the metaclass hierarchy.
*/
static VALUE
singleton_class_of(VALUE obj)
{
VALUE klass;
switch (TYPE(obj)) {
case T_FIXNUM:
case T_BIGNUM:
case T_FLOAT:
case T_SYMBOL:
rb_raise(rb_eTypeError, "can't define singleton");
case T_FALSE:
case T_TRUE:
case T_NIL:
klass = special_singleton_class_of(obj);
if (NIL_P(klass))
rb_bug("unknown immediate %p", (void *)obj);
return klass;
case T_STRING:
if (CHILLED_STRING_P(obj)) {
CHILLED_STRING_MUTATED(obj);
}
else if (FL_TEST_RAW(obj, RSTRING_FSTR)) {
rb_raise(rb_eTypeError, "can't define singleton");
}
}
klass = METACLASS_OF(obj);
if (!(RCLASS_SINGLETON_P(klass) &&
RCLASS_ATTACHED_OBJECT(klass) == obj)) {
klass = rb_make_metaclass(obj, klass);
}
RB_FL_SET_RAW(klass, RB_OBJ_FROZEN_RAW(obj));
return klass;
}
void
rb_freeze_singleton_class(VALUE x)
{
/* should not propagate to meta-meta-class, and so on */
if (!RCLASS_SINGLETON_P(x)) {
VALUE klass = RBASIC_CLASS(x);
if (klass && // no class when hidden from ObjectSpace
FL_TEST(klass, (FL_SINGLETON|FL_FREEZE)) == FL_SINGLETON) {
OBJ_FREEZE(klass);
}
}
}
/**
* Returns the singleton class of `obj`, or nil if obj is not a
* singleton object.
*
* @param obj an arbitrary object.
* @return the singleton class or nil.
*/
VALUE
rb_singleton_class_get(VALUE obj)
{
VALUE klass;
if (SPECIAL_CONST_P(obj)) {
return rb_special_singleton_class(obj);
}
klass = METACLASS_OF(obj);
if (!RCLASS_SINGLETON_P(klass)) return Qnil;
if (RCLASS_ATTACHED_OBJECT(klass) != obj) return Qnil;
return klass;
}
VALUE
rb_singleton_class(VALUE obj)
{
VALUE klass = singleton_class_of(obj);
/* ensures an exposed class belongs to its own eigenclass */
if (RB_TYPE_P(obj, T_CLASS)) (void)ENSURE_EIGENCLASS(klass);
return klass;
}
/*!
* \}
*/
/*!
* \addtogroup defmethod
* \{
*/
#ifdef rb_define_singleton_method
#undef rb_define_singleton_method
#endif
void
rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_method(singleton_class_of(obj), name, func, argc);
}
#ifdef rb_define_module_function
#undef rb_define_module_function
#endif
void
rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_private_method(module, name, func, argc);
rb_define_singleton_method(module, name, func, argc);
}
#ifdef rb_define_global_function
#undef rb_define_global_function
#endif
void
rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_module_function(rb_mKernel, name, func, argc);
}
void
rb_define_alias(VALUE klass, const char *name1, const char *name2)
{
rb_alias(klass, rb_intern(name1), rb_intern(name2));
}
void
rb_define_attr(VALUE klass, const char *name, int read, int write)
{
rb_attr(klass, rb_intern(name), read, write, FALSE);
}
VALUE
rb_keyword_error_new(const char *error, VALUE keys)
{
long i = 0, len = RARRAY_LEN(keys);
VALUE error_message = rb_sprintf("%s keyword%.*s", error, len > 1, "s");
if (len > 0) {
rb_str_cat_cstr(error_message, ": ");
while (1) {
const VALUE k = RARRAY_AREF(keys, i);
rb_str_append(error_message, rb_inspect(k));
if (++i >= len) break;
rb_str_cat_cstr(error_message, ", ");
}
}
return rb_exc_new_str(rb_eArgError, error_message);
}
NORETURN(static void rb_keyword_error(const char *error, VALUE keys));
static void
rb_keyword_error(const char *error, VALUE keys)
{
rb_exc_raise(rb_keyword_error_new(error, keys));
}
NORETURN(static void unknown_keyword_error(VALUE hash, const ID *table, int keywords));
static void
unknown_keyword_error(VALUE hash, const ID *table, int keywords)
{
int i;
for (i = 0; i < keywords; i++) {
st_data_t key = ID2SYM(table[i]);
rb_hash_stlike_delete(hash, &key, NULL);
}
rb_keyword_error("unknown", rb_hash_keys(hash));
}
static int
separate_symbol(st_data_t key, st_data_t value, st_data_t arg)
{
VALUE *kwdhash = (VALUE *)arg;
if (!SYMBOL_P(key)) kwdhash++;
if (!*kwdhash) *kwdhash = rb_hash_new();
rb_hash_aset(*kwdhash, (VALUE)key, (VALUE)value);
return ST_CONTINUE;
}
VALUE
rb_extract_keywords(VALUE *orighash)
{
VALUE parthash[2] = {0, 0};
VALUE hash = *orighash;
if (RHASH_EMPTY_P(hash)) {
*orighash = 0;
return hash;
}
rb_hash_foreach(hash, separate_symbol, (st_data_t)&parthash);
*orighash = parthash[1];
if (parthash[1] && RBASIC_CLASS(hash) != rb_cHash) {
RBASIC_SET_CLASS(parthash[1], RBASIC_CLASS(hash));
}
return parthash[0];
}
int
rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
{
int i = 0, j;
int rest = 0;
VALUE missing = Qnil;
st_data_t key;
#define extract_kwarg(keyword, val) \
(key = (st_data_t)(keyword), values ? \
(rb_hash_stlike_delete(keyword_hash, &key, &(val)) || ((val) = Qundef, 0)) : \
rb_hash_stlike_lookup(keyword_hash, key, NULL))
if (NIL_P(keyword_hash)) keyword_hash = 0;
if (optional < 0) {
rest = 1;
optional = -1-optional;
}
if (required) {
for (; i < required; i++) {
VALUE keyword = ID2SYM(table[i]);
if (keyword_hash) {
if (extract_kwarg(keyword, values[i])) {
continue;
}
}
if (NIL_P(missing)) missing = rb_ary_hidden_new(1);
rb_ary_push(missing, keyword);
}
if (!NIL_P(missing)) {
rb_keyword_error("missing", missing);
}
}
j = i;
if (optional && keyword_hash) {
for (i = 0; i < optional; i++) {
if (extract_kwarg(ID2SYM(table[required+i]), values[required+i])) {
j++;
}
}
}
if (!rest && keyword_hash) {
if (RHASH_SIZE(keyword_hash) > (unsigned int)(values ? 0 : j)) {
unknown_keyword_error(keyword_hash, table, required+optional);
}
}
if (values && !keyword_hash) {
for (i = 0; i < required + optional; i++) {
values[i] = Qundef;
}
}
return j;
#undef extract_kwarg
}
struct rb_scan_args_t {
int kw_flag;
int n_lead;
int n_opt;
int n_trail;
bool f_var;
bool f_hash;
bool f_block;
};
static void
rb_scan_args_parse(int kw_flag, const char *fmt, struct rb_scan_args_t *arg)
{
const char *p = fmt;
memset(arg, 0, sizeof(*arg));
arg->kw_flag = kw_flag;
if (ISDIGIT(*p)) {
arg->n_lead = *p - '0';
p++;
if (ISDIGIT(*p)) {
arg->n_opt = *p - '0';
p++;
}
}
if (*p == '*') {
arg->f_var = 1;
p++;
}
if (ISDIGIT(*p)) {
arg->n_trail = *p - '0';
p++;
}
if (*p == ':') {
arg->f_hash = 1;
p++;
}
if (*p == '&') {
arg->f_block = 1;
p++;
}
if (*p != '\0') {
rb_fatal("bad scan arg format: %s", fmt);
}
}
static int
rb_scan_args_assign(const struct rb_scan_args_t *arg, int argc, const VALUE *const argv, va_list vargs)
{
int i, argi = 0;
VALUE *var, hash = Qnil;
#define rb_scan_args_next_param() va_arg(vargs, VALUE *)
const int kw_flag = arg->kw_flag;
const int n_lead = arg->n_lead;
const int n_opt = arg->n_opt;
const int n_trail = arg->n_trail;
const int n_mand = n_lead + n_trail;
const bool f_var = arg->f_var;
const bool f_hash = arg->f_hash;
const bool f_block = arg->f_block;
/* capture an option hash - phase 1: pop from the argv */
if (f_hash && argc > 0) {
VALUE last = argv[argc - 1];
if (rb_scan_args_keyword_p(kw_flag, last)) {
hash = rb_hash_dup(last);
argc--;
}
}
if (argc < n_mand) {
goto argc_error;
}
/* capture leading mandatory arguments */
for (i = 0; i < n_lead; i++) {
var = rb_scan_args_next_param();
if (var) *var = argv[argi];
argi++;
}
/* capture optional arguments */
for (i = 0; i < n_opt; i++) {
var = rb_scan_args_next_param();
if (argi < argc - n_trail) {
if (var) *var = argv[argi];
argi++;
}
else {
if (var) *var = Qnil;
}
}
/* capture variable length arguments */
if (f_var) {
int n_var = argc - argi - n_trail;
var = rb_scan_args_next_param();
if (0 < n_var) {
if (var) *var = rb_ary_new_from_values(n_var, &argv[argi]);
argi += n_var;
}
else {
if (var) *var = rb_ary_new();
}
}
/* capture trailing mandatory arguments */
for (i = 0; i < n_trail; i++) {
var = rb_scan_args_next_param();
if (var) *var = argv[argi];
argi++;
}
/* capture an option hash - phase 2: assignment */
if (f_hash) {
var = rb_scan_args_next_param();
if (var) *var = hash;
}
/* capture iterator block */
if (f_block) {
var = rb_scan_args_next_param();
if (rb_block_given_p()) {
*var = rb_block_proc();
}
else {
*var = Qnil;
}
}
if (argi == argc) {
return argc;
}
argc_error:
return -(argc + 1);
#undef rb_scan_args_next_param
}
static int
rb_scan_args_result(const struct rb_scan_args_t *const arg, int argc)
{
const int n_lead = arg->n_lead;
const int n_opt = arg->n_opt;
const int n_trail = arg->n_trail;
const int n_mand = n_lead + n_trail;
const bool f_var = arg->f_var;
if (argc >= 0) {
return argc;
}
argc = -argc - 1;
rb_error_arity(argc, n_mand, f_var ? UNLIMITED_ARGUMENTS : n_mand + n_opt);
UNREACHABLE_RETURN(-1);
}
#undef rb_scan_args
int
rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...)
{
va_list vargs;
struct rb_scan_args_t arg;
rb_scan_args_parse(RB_SCAN_ARGS_PASS_CALLED_KEYWORDS, fmt, &arg);
va_start(vargs,fmt);
argc = rb_scan_args_assign(&arg, argc, argv, vargs);
va_end(vargs);
return rb_scan_args_result(&arg, argc);
}
#undef rb_scan_args_kw
int
rb_scan_args_kw(int kw_flag, int argc, const VALUE *argv, const char *fmt, ...)
{
va_list vargs;
struct rb_scan_args_t arg;
rb_scan_args_parse(kw_flag, fmt, &arg);
va_start(vargs,fmt);
argc = rb_scan_args_assign(&arg, argc, argv, vargs);
va_end(vargs);
return rb_scan_args_result(&arg, argc);
}
/*!
* \}
*/