This behave almost exactly as a T_OBJECT, the layout is entirely compatible. This aims to solve two problems. First, it solves the problem of namspaced classes having a single `shape_id`. Now each namespaced classext has an object that can hold the namespace specific shape. Second, it open the door to later make class instance variable writes atomics, hence be able to read class variables without locking the VM. In the future, in multi-ractor mode, we can do the write on a copy of the `fields_obj` and then atomically swap it. Considerations: - Right now the `RClass` shape_id is always synchronized, but with namespace we should likely mark classes that have multiple namespace with a specific shape flag.
866 lines
23 KiB
C
866 lines
23 KiB
C
/**********************************************************************
|
|
|
|
objspace.c - ObjectSpace extender for MRI.
|
|
|
|
$Author$
|
|
created at: Wed Jun 17 07:39:17 2009
|
|
|
|
NOTE: This extension library is only expected to exist with C Ruby.
|
|
|
|
All the files in this distribution are covered under the Ruby's
|
|
license (see the file COPYING).
|
|
|
|
**********************************************************************/
|
|
|
|
#include "internal.h"
|
|
#include "internal/class.h"
|
|
#include "internal/compilers.h"
|
|
#include "internal/gc.h"
|
|
#include "internal/hash.h"
|
|
#include "internal/imemo.h"
|
|
#include "internal/sanitizers.h"
|
|
#include "ruby/io.h"
|
|
#include "ruby/re.h"
|
|
#include "ruby/st.h"
|
|
#include "symbol.h"
|
|
|
|
#undef rb_funcall
|
|
|
|
#include "ruby/ruby.h"
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.memsize_of(obj) -> Integer
|
|
*
|
|
* Return consuming memory size of obj in bytes.
|
|
*
|
|
* Note that the return size is incomplete. You need to deal with this
|
|
* information as only a *HINT*. Especially, the size of +T_DATA+ may not be
|
|
* correct.
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*
|
|
* From Ruby 2.2, memsize_of(obj) returns a memory size includes
|
|
* sizeof(RVALUE).
|
|
*/
|
|
|
|
static VALUE
|
|
memsize_of_m(VALUE self, VALUE obj)
|
|
{
|
|
return SIZET2NUM(rb_obj_memsize_of(obj));
|
|
}
|
|
|
|
struct total_data {
|
|
size_t total;
|
|
VALUE klass;
|
|
};
|
|
|
|
static void
|
|
total_i(VALUE v, void *ptr)
|
|
{
|
|
struct total_data *data = (struct total_data *)ptr;
|
|
|
|
if (!rb_objspace_internal_object_p(v)) {
|
|
if (data->klass == 0 || rb_obj_is_kind_of(v, data->klass)) {
|
|
data->total += rb_obj_memsize_of(v);
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef void (*each_obj_with_flags)(VALUE, void*);
|
|
|
|
struct obj_itr {
|
|
each_obj_with_flags cb;
|
|
void *data;
|
|
};
|
|
|
|
static int
|
|
heap_iter(void *vstart, void *vend, size_t stride, void *ptr)
|
|
{
|
|
struct obj_itr * ctx = (struct obj_itr *)ptr;
|
|
VALUE v;
|
|
|
|
for (v = (VALUE)vstart; v != (VALUE)vend; v += stride) {
|
|
void *poisoned = rb_asan_poisoned_object_p(v);
|
|
rb_asan_unpoison_object(v, false);
|
|
|
|
if (RBASIC(v)->flags) {
|
|
(*ctx->cb)(v, ctx->data);
|
|
}
|
|
|
|
if (poisoned) {
|
|
rb_asan_poison_object(v);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
each_object_with_flags(each_obj_with_flags cb, void *ctx)
|
|
{
|
|
struct obj_itr data;
|
|
data.cb = cb;
|
|
data.data = ctx;
|
|
rb_objspace_each_objects(heap_iter, &data);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.memsize_of_all([klass]) -> Integer
|
|
*
|
|
* Return consuming memory size of all living objects in bytes.
|
|
*
|
|
* If +klass+ (should be Class object) is given, return the total memory size
|
|
* of instances of the given class.
|
|
*
|
|
* Note that the returned size is incomplete. You need to deal with this
|
|
* information as only a *HINT*. Especially, the size of +T_DATA+ may not be
|
|
* correct.
|
|
*
|
|
* Note that this method does *NOT* return total malloc'ed memory size.
|
|
*
|
|
* This method can be defined by the following Ruby code:
|
|
*
|
|
* def memsize_of_all klass = false
|
|
* total = 0
|
|
* ObjectSpace.each_object{|e|
|
|
* total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass)
|
|
* }
|
|
* total
|
|
* end
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*/
|
|
|
|
static VALUE
|
|
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
struct total_data data = {0, 0};
|
|
|
|
if (argc > 0) {
|
|
rb_scan_args(argc, argv, "01", &data.klass);
|
|
}
|
|
|
|
each_object_with_flags(total_i, &data);
|
|
return SIZET2NUM(data.total);
|
|
}
|
|
|
|
static int
|
|
set_zero_i(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
VALUE k = (VALUE)key;
|
|
VALUE hash = (VALUE)arg;
|
|
rb_hash_aset(hash, k, INT2FIX(0));
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static VALUE
|
|
setup_hash(int argc, VALUE *argv)
|
|
{
|
|
VALUE hash;
|
|
|
|
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
|
|
if (!RB_TYPE_P(hash, T_HASH))
|
|
rb_raise(rb_eTypeError, "non-hash given");
|
|
}
|
|
|
|
if (hash == Qnil) {
|
|
hash = rb_hash_new();
|
|
}
|
|
else if (!RHASH_EMPTY_P(hash)) {
|
|
rb_hash_foreach(hash, set_zero_i, (st_data_t)hash);
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
static void
|
|
cos_i(VALUE v, void *data)
|
|
{
|
|
size_t *counts = (size_t *)data;
|
|
counts[BUILTIN_TYPE(v)] += rb_obj_memsize_of(v);
|
|
}
|
|
|
|
static VALUE
|
|
type2sym(enum ruby_value_type i)
|
|
{
|
|
VALUE type;
|
|
switch (i) {
|
|
#define CASE_TYPE(t) case t: type = ID2SYM(rb_intern(#t)); break;
|
|
CASE_TYPE(T_NONE);
|
|
CASE_TYPE(T_OBJECT);
|
|
CASE_TYPE(T_CLASS);
|
|
CASE_TYPE(T_MODULE);
|
|
CASE_TYPE(T_FLOAT);
|
|
CASE_TYPE(T_STRING);
|
|
CASE_TYPE(T_REGEXP);
|
|
CASE_TYPE(T_ARRAY);
|
|
CASE_TYPE(T_HASH);
|
|
CASE_TYPE(T_STRUCT);
|
|
CASE_TYPE(T_BIGNUM);
|
|
CASE_TYPE(T_FILE);
|
|
CASE_TYPE(T_DATA);
|
|
CASE_TYPE(T_MATCH);
|
|
CASE_TYPE(T_COMPLEX);
|
|
CASE_TYPE(T_RATIONAL);
|
|
CASE_TYPE(T_NIL);
|
|
CASE_TYPE(T_TRUE);
|
|
CASE_TYPE(T_FALSE);
|
|
CASE_TYPE(T_SYMBOL);
|
|
CASE_TYPE(T_FIXNUM);
|
|
CASE_TYPE(T_UNDEF);
|
|
CASE_TYPE(T_IMEMO);
|
|
CASE_TYPE(T_NODE);
|
|
CASE_TYPE(T_ICLASS);
|
|
CASE_TYPE(T_MOVED);
|
|
CASE_TYPE(T_ZOMBIE);
|
|
#undef CASE_TYPE
|
|
default: rb_bug("type2sym: unknown type (%d)", i);
|
|
}
|
|
return type;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.count_objects_size([result_hash]) -> hash
|
|
*
|
|
* Counts objects size (in bytes) for each type.
|
|
*
|
|
* Note that this information is incomplete. You need to deal with
|
|
* this information as only a *HINT*. Especially, total size of
|
|
* T_DATA may be wrong.
|
|
*
|
|
* It returns a hash as:
|
|
* {:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
|
|
*
|
|
* If the optional argument, result_hash, is given,
|
|
* it is overwritten and returned.
|
|
* This is intended to avoid probe effect.
|
|
*
|
|
* The contents of the returned hash is implementation defined.
|
|
* It may be changed in future.
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*/
|
|
|
|
static VALUE
|
|
count_objects_size(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
size_t counts[T_MASK+1];
|
|
size_t total = 0;
|
|
enum ruby_value_type i;
|
|
VALUE hash = setup_hash(argc, argv);
|
|
|
|
for (i = 0; i <= T_MASK; i++) {
|
|
counts[i] = 0;
|
|
}
|
|
|
|
each_object_with_flags(cos_i, &counts[0]);
|
|
|
|
for (i = 0; i <= T_MASK; i++) {
|
|
if (counts[i]) {
|
|
VALUE type = type2sym(i);
|
|
total += counts[i];
|
|
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
|
|
}
|
|
}
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
|
|
return hash;
|
|
}
|
|
|
|
struct dynamic_symbol_counts {
|
|
size_t mortal;
|
|
size_t immortal;
|
|
};
|
|
|
|
static void
|
|
cs_i(VALUE v, void *n)
|
|
{
|
|
struct dynamic_symbol_counts *counts = (struct dynamic_symbol_counts *)n;
|
|
|
|
if (BUILTIN_TYPE(v) == T_SYMBOL) {
|
|
ID id = RSYMBOL(v)->id;
|
|
if ((id & ~ID_SCOPE_MASK) == 0) {
|
|
counts->mortal++;
|
|
}
|
|
else {
|
|
counts->immortal++;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t rb_sym_immortal_count(void);
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.count_symbols([result_hash]) -> hash
|
|
*
|
|
* Counts symbols for each Symbol type.
|
|
*
|
|
* This method is only for MRI developers interested in performance and memory
|
|
* usage of Ruby programs.
|
|
*
|
|
* If the optional argument, result_hash, is given, it is overwritten and
|
|
* returned. This is intended to avoid probe effect.
|
|
*
|
|
* Note:
|
|
* The contents of the returned hash is implementation defined.
|
|
* It may be changed in future.
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*
|
|
* On this version of MRI, they have 3 types of Symbols (and 1 total counts).
|
|
*
|
|
* * mortal_dynamic_symbol: GC target symbols (collected by GC)
|
|
* * immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
|
|
* * immortal_static_symbol: Immortal symbols (do not collected by GC)
|
|
* * immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)
|
|
*/
|
|
|
|
static VALUE
|
|
count_symbols(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
struct dynamic_symbol_counts dynamic_counts = {0, 0};
|
|
VALUE hash = setup_hash(argc, argv);
|
|
|
|
size_t immortal_symbols = rb_sym_immortal_count();
|
|
each_object_with_flags(cs_i, &dynamic_counts);
|
|
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.mortal));
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")), SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")), SIZET2NUM(immortal_symbols));
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.count_nodes([result_hash]) -> hash
|
|
*
|
|
* Counts nodes for each node type.
|
|
*
|
|
* This method is only for MRI developers interested in performance and memory
|
|
* usage of Ruby programs.
|
|
*
|
|
* It returns a hash as:
|
|
*
|
|
* {:NODE_METHOD=>2027, :NODE_FBODY=>1927, :NODE_CFUNC=>1798, ...}
|
|
*
|
|
* If the optional argument, result_hash, is given, it is overwritten and
|
|
* returned. This is intended to avoid probe effect.
|
|
*
|
|
* Note:
|
|
* The contents of the returned hash is implementation defined.
|
|
* It may be changed in future.
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*/
|
|
|
|
static VALUE
|
|
count_nodes(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
return setup_hash(argc, argv);
|
|
}
|
|
|
|
static void
|
|
cto_i(VALUE v, void *data)
|
|
{
|
|
VALUE hash = (VALUE)data;
|
|
|
|
if (BUILTIN_TYPE(v) == T_DATA) {
|
|
VALUE counter;
|
|
VALUE key = RBASIC(v)->klass;
|
|
|
|
if (key == 0) {
|
|
const char *name = rb_objspace_data_type_name(v);
|
|
if (name == 0) name = "unknown";
|
|
key = ID2SYM(rb_intern(name));
|
|
}
|
|
|
|
counter = rb_hash_aref(hash, key);
|
|
if (NIL_P(counter)) {
|
|
counter = INT2FIX(1);
|
|
}
|
|
else {
|
|
counter = INT2FIX(FIX2INT(counter) + 1);
|
|
}
|
|
|
|
rb_hash_aset(hash, key, counter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.count_tdata_objects([result_hash]) -> hash
|
|
*
|
|
* Counts objects for each +T_DATA+ type.
|
|
*
|
|
* This method is only for MRI developers interested in performance and memory
|
|
* usage of Ruby programs.
|
|
*
|
|
* It returns a hash as:
|
|
*
|
|
* {RubyVM::InstructionSequence=>504, :parser=>5, :barrier=>6,
|
|
* :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99,
|
|
* ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1,
|
|
* Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2}
|
|
* # T_DATA objects existing at startup on r32276.
|
|
*
|
|
* If the optional argument, result_hash, is given, it is overwritten and
|
|
* returned. This is intended to avoid probe effect.
|
|
*
|
|
* The contents of the returned hash is implementation specific and may change
|
|
* in the future.
|
|
*
|
|
* In this version, keys are Class object or Symbol object.
|
|
*
|
|
* If object is kind of normal (accessible) object, the key is Class object.
|
|
* If object is not a kind of normal (internal) object, the key is symbol
|
|
* name, registered by rb_data_type_struct.
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*/
|
|
|
|
static VALUE
|
|
count_tdata_objects(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE hash = setup_hash(argc, argv);
|
|
each_object_with_flags(cto_i, (void *)hash);
|
|
return hash;
|
|
}
|
|
|
|
static ID imemo_type_ids[IMEMO_MASK+1];
|
|
|
|
static void
|
|
count_imemo_objects_i(VALUE v, void *data)
|
|
{
|
|
VALUE hash = (VALUE)data;
|
|
|
|
if (BUILTIN_TYPE(v) == T_IMEMO) {
|
|
VALUE counter;
|
|
VALUE key = ID2SYM(imemo_type_ids[imemo_type(v)]);
|
|
|
|
counter = rb_hash_aref(hash, key);
|
|
|
|
if (NIL_P(counter)) {
|
|
counter = INT2FIX(1);
|
|
}
|
|
else {
|
|
counter = INT2FIX(FIX2INT(counter) + 1);
|
|
}
|
|
|
|
rb_hash_aset(hash, key, counter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.count_imemo_objects([result_hash]) -> hash
|
|
*
|
|
* Counts objects for each +T_IMEMO+ type.
|
|
*
|
|
* This method is only for MRI developers interested in performance and memory
|
|
* usage of Ruby programs.
|
|
*
|
|
* It returns a hash as:
|
|
*
|
|
* {:imemo_ifunc=>8,
|
|
* :imemo_svar=>7,
|
|
* :imemo_cref=>509,
|
|
* :imemo_memo=>1,
|
|
* :imemo_throw_data=>1}
|
|
*
|
|
* If the optional argument, result_hash, is given, it is overwritten and
|
|
* returned. This is intended to avoid probe effect.
|
|
*
|
|
* The contents of the returned hash is implementation specific and may change
|
|
* in the future.
|
|
*
|
|
* In this version, keys are symbol objects.
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*/
|
|
|
|
static VALUE
|
|
count_imemo_objects(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE hash = setup_hash(argc, argv);
|
|
|
|
if (imemo_type_ids[0] == 0) {
|
|
#define INIT_IMEMO_TYPE_ID(n) (imemo_type_ids[n] = rb_intern_const(#n))
|
|
INIT_IMEMO_TYPE_ID(imemo_env);
|
|
INIT_IMEMO_TYPE_ID(imemo_cref);
|
|
INIT_IMEMO_TYPE_ID(imemo_svar);
|
|
INIT_IMEMO_TYPE_ID(imemo_throw_data);
|
|
INIT_IMEMO_TYPE_ID(imemo_ifunc);
|
|
INIT_IMEMO_TYPE_ID(imemo_memo);
|
|
INIT_IMEMO_TYPE_ID(imemo_ment);
|
|
INIT_IMEMO_TYPE_ID(imemo_iseq);
|
|
INIT_IMEMO_TYPE_ID(imemo_tmpbuf);
|
|
INIT_IMEMO_TYPE_ID(imemo_ast);
|
|
INIT_IMEMO_TYPE_ID(imemo_parser_strterm);
|
|
INIT_IMEMO_TYPE_ID(imemo_callinfo);
|
|
INIT_IMEMO_TYPE_ID(imemo_callcache);
|
|
INIT_IMEMO_TYPE_ID(imemo_constcache);
|
|
INIT_IMEMO_TYPE_ID(imemo_class_fields);
|
|
#undef INIT_IMEMO_TYPE_ID
|
|
}
|
|
|
|
each_object_with_flags(count_imemo_objects_i, (void *)hash);
|
|
|
|
return hash;
|
|
}
|
|
|
|
static void
|
|
iow_mark(void *ptr)
|
|
{
|
|
rb_gc_mark((VALUE)ptr);
|
|
}
|
|
|
|
static size_t
|
|
iow_size(const void *ptr)
|
|
{
|
|
VALUE obj = (VALUE)ptr;
|
|
return rb_obj_memsize_of(obj);
|
|
}
|
|
|
|
static const rb_data_type_t iow_data_type = {
|
|
"ObjectSpace::InternalObjectWrapper",
|
|
{iow_mark, 0, iow_size,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static VALUE rb_cInternalObjectWrapper;
|
|
|
|
static VALUE
|
|
iow_newobj(VALUE obj)
|
|
{
|
|
return TypedData_Wrap_Struct(rb_cInternalObjectWrapper, &iow_data_type, (void *)obj);
|
|
}
|
|
|
|
/* Returns the type of the internal object. */
|
|
static VALUE
|
|
iow_type(VALUE self)
|
|
{
|
|
VALUE obj = (VALUE)DATA_PTR(self);
|
|
return type2sym(BUILTIN_TYPE(obj));
|
|
}
|
|
|
|
/* See Object#inspect. */
|
|
static VALUE
|
|
iow_inspect(VALUE self)
|
|
{
|
|
VALUE obj = (VALUE)DATA_PTR(self);
|
|
VALUE type = type2sym(BUILTIN_TYPE(obj));
|
|
|
|
return rb_sprintf("#<InternalObject:%p %"PRIsVALUE">", (void *)obj, rb_sym2str(type));
|
|
}
|
|
|
|
/* Returns the Object#object_id of the internal object. */
|
|
static VALUE
|
|
iow_internal_object_id(VALUE self)
|
|
{
|
|
VALUE obj = (VALUE)DATA_PTR(self);
|
|
return rb_obj_id(obj);
|
|
}
|
|
|
|
struct rof_data {
|
|
VALUE refs;
|
|
VALUE values;
|
|
};
|
|
|
|
static void
|
|
reachable_object_from_i(VALUE obj, void *data_ptr)
|
|
{
|
|
struct rof_data *data = (struct rof_data *)data_ptr;
|
|
VALUE key = obj;
|
|
VALUE val = obj;
|
|
|
|
if (!rb_objspace_garbage_object_p(obj)) {
|
|
if (NIL_P(rb_hash_lookup(data->refs, key))) {
|
|
rb_hash_aset(data->refs, key, Qtrue);
|
|
|
|
if (rb_objspace_internal_object_p(obj)) {
|
|
val = iow_newobj(obj);
|
|
}
|
|
|
|
rb_ary_push(data->values, val);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
collect_values(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
VALUE ary = (VALUE)data;
|
|
rb_ary_push(ary, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.reachable_objects_from(obj) -> array or nil
|
|
*
|
|
* [MRI specific feature] Return all reachable objects from `obj'.
|
|
*
|
|
* This method returns all reachable objects from `obj'.
|
|
*
|
|
* If `obj' has two or more references to the same object `x', then returned
|
|
* array only includes one `x' object.
|
|
*
|
|
* If `obj' is a non-markable (non-heap management) object such as true,
|
|
* false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
|
|
*
|
|
* If `obj' has references to an internal object, then it returns instances of
|
|
* ObjectSpace::InternalObjectWrapper class. This object contains a reference
|
|
* to an internal object and you can check the type of internal object with
|
|
* `type' method.
|
|
*
|
|
* If `obj' is instance of ObjectSpace::InternalObjectWrapper class, then this
|
|
* method returns all reachable object from an internal object, which is
|
|
* pointed by `obj'.
|
|
*
|
|
* With this method, you can find memory leaks.
|
|
*
|
|
* This method is only expected to work with C Ruby.
|
|
*
|
|
* Example:
|
|
* ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
|
|
* #=> [Array, 'a', 'b', 'c']
|
|
*
|
|
* ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
|
|
* #=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id
|
|
*
|
|
* ObjectSpace.reachable_objects_from([v = 'a', v, v])
|
|
* #=> [Array, 'a']
|
|
*
|
|
* ObjectSpace.reachable_objects_from(1)
|
|
* #=> nil # 1 is not markable (heap managed) object
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
reachable_objects_from(VALUE self, VALUE obj)
|
|
{
|
|
if (!RB_SPECIAL_CONST_P(obj)) {
|
|
struct rof_data data;
|
|
|
|
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
|
|
obj = (VALUE)DATA_PTR(obj);
|
|
}
|
|
|
|
data.refs = rb_obj_hide(rb_ident_hash_new());
|
|
data.values = rb_ary_new();
|
|
|
|
rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);
|
|
|
|
return data.values;
|
|
}
|
|
else {
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
struct rofr_data {
|
|
VALUE categories;
|
|
const char *last_category;
|
|
VALUE last_category_str;
|
|
VALUE last_category_objects;
|
|
};
|
|
|
|
static void
|
|
reachable_object_from_root_i(const char *category, VALUE obj, void *ptr)
|
|
{
|
|
struct rofr_data *data = (struct rofr_data *)ptr;
|
|
VALUE category_str;
|
|
VALUE category_objects;
|
|
|
|
if (category == data->last_category) {
|
|
category_str = data->last_category_str;
|
|
category_objects = data->last_category_objects;
|
|
}
|
|
else {
|
|
data->last_category = category;
|
|
category_str = data->last_category_str = rb_str_new2(category);
|
|
category_objects = data->last_category_objects = rb_ident_hash_new();
|
|
if (!NIL_P(rb_hash_lookup(data->categories, category_str))) {
|
|
rb_bug("reachable_object_from_root_i: category should insert at once");
|
|
}
|
|
rb_hash_aset(data->categories, category_str, category_objects);
|
|
}
|
|
|
|
if (!rb_objspace_garbage_object_p(obj) &&
|
|
obj != data->categories &&
|
|
obj != data->last_category_objects) {
|
|
if (rb_objspace_internal_object_p(obj)) {
|
|
obj = iow_newobj(obj);
|
|
}
|
|
rb_hash_aset(category_objects, obj, obj);
|
|
}
|
|
}
|
|
|
|
static int
|
|
collect_values_of_values(VALUE category, VALUE category_objects, VALUE categories)
|
|
{
|
|
VALUE ary = rb_ary_new();
|
|
rb_hash_foreach(category_objects, collect_values, ary);
|
|
rb_hash_aset(categories, category, ary);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.reachable_objects_from_root -> hash
|
|
*
|
|
* [MRI specific feature] Return all reachable objects from root.
|
|
*/
|
|
static VALUE
|
|
reachable_objects_from_root(VALUE self)
|
|
{
|
|
struct rofr_data data;
|
|
VALUE hash = data.categories = rb_ident_hash_new();
|
|
data.last_category = 0;
|
|
|
|
rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
|
|
rb_hash_foreach(hash, collect_values_of_values, hash);
|
|
|
|
return hash;
|
|
}
|
|
|
|
static VALUE
|
|
wrap_klass_iow(VALUE klass)
|
|
{
|
|
if (!RTEST(klass)) {
|
|
return Qnil;
|
|
}
|
|
else if (RB_TYPE_P(klass, T_ICLASS) ||
|
|
CLASS_OF(klass) == Qfalse /* hidden object */) {
|
|
return iow_newobj(klass);
|
|
}
|
|
else {
|
|
return klass;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.internal_class_of(obj) -> Class or Module
|
|
*
|
|
* [MRI specific feature] Return internal class of obj.
|
|
* obj can be an instance of InternalObjectWrapper.
|
|
*
|
|
* Note that you should not use this method in your application.
|
|
*/
|
|
static VALUE
|
|
objspace_internal_class_of(VALUE self, VALUE obj)
|
|
{
|
|
VALUE klass;
|
|
|
|
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
|
|
obj = (VALUE)DATA_PTR(obj);
|
|
}
|
|
|
|
if (RB_TYPE_P(obj, T_IMEMO)) {
|
|
return Qnil;
|
|
}
|
|
else {
|
|
klass = CLASS_OF(obj);
|
|
return wrap_klass_iow(klass);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.internal_super_of(cls) -> Class or Module
|
|
*
|
|
* [MRI specific feature] Return internal super class of cls (Class or Module).
|
|
* obj can be an instance of InternalObjectWrapper.
|
|
*
|
|
* Note that you should not use this method in your application.
|
|
*/
|
|
static VALUE
|
|
objspace_internal_super_of(VALUE self, VALUE obj)
|
|
{
|
|
VALUE super;
|
|
|
|
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
|
|
obj = (VALUE)DATA_PTR(obj);
|
|
}
|
|
|
|
switch (OBJ_BUILTIN_TYPE(obj)) {
|
|
case T_MODULE:
|
|
case T_CLASS:
|
|
case T_ICLASS:
|
|
super = rb_class_super_of(obj);
|
|
break;
|
|
default:
|
|
rb_raise(rb_eArgError, "class or module is expected");
|
|
}
|
|
|
|
return wrap_klass_iow(super);
|
|
}
|
|
|
|
void Init_object_tracing(VALUE rb_mObjSpace);
|
|
void Init_objspace_dump(VALUE rb_mObjSpace);
|
|
|
|
/*
|
|
* Document-module: ObjectSpace
|
|
*
|
|
* The objspace library extends the ObjectSpace module and adds several
|
|
* methods to get internal statistic information about
|
|
* object/memory management.
|
|
*
|
|
* You need to <code>require 'objspace'</code> to use this extension module.
|
|
*
|
|
* Generally, you *SHOULD* *NOT* use this library if you do not know
|
|
* about the MRI implementation. Mainly, this library is for (memory)
|
|
* profiler developers and MRI developers who need to know about MRI
|
|
* memory usage.
|
|
*/
|
|
|
|
void
|
|
Init_objspace(void)
|
|
{
|
|
#undef rb_intern
|
|
VALUE rb_mObjSpace;
|
|
#if 0
|
|
rb_mObjSpace = rb_define_module("ObjectSpace"); /* let rdoc know */
|
|
#endif
|
|
rb_mObjSpace = rb_const_get(rb_cObject, rb_intern("ObjectSpace"));
|
|
|
|
rb_define_module_function(rb_mObjSpace, "memsize_of", memsize_of_m, 1);
|
|
rb_define_module_function(rb_mObjSpace, "memsize_of_all", memsize_of_all_m, -1);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "count_objects_size", count_objects_size, -1);
|
|
rb_define_module_function(rb_mObjSpace, "count_symbols", count_symbols, -1);
|
|
rb_define_module_function(rb_mObjSpace, "count_nodes", count_nodes, -1);
|
|
rb_define_module_function(rb_mObjSpace, "count_tdata_objects", count_tdata_objects, -1);
|
|
rb_define_module_function(rb_mObjSpace, "count_imemo_objects", count_imemo_objects, -1);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "reachable_objects_from", reachable_objects_from, 1);
|
|
rb_define_module_function(rb_mObjSpace, "reachable_objects_from_root", reachable_objects_from_root, 0);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "internal_class_of", objspace_internal_class_of, 1);
|
|
rb_define_module_function(rb_mObjSpace, "internal_super_of", objspace_internal_super_of, 1);
|
|
|
|
/*
|
|
* This class is used as a return value from
|
|
* ObjectSpace::reachable_objects_from.
|
|
*
|
|
* When ObjectSpace::reachable_objects_from returns an object with
|
|
* references to an internal object, an instance of this class is returned.
|
|
*
|
|
* You can use the #type method to check the type of the internal object.
|
|
*/
|
|
rb_cInternalObjectWrapper = rb_define_class_under(rb_mObjSpace, "InternalObjectWrapper", rb_cObject);
|
|
rb_undef_alloc_func(rb_cInternalObjectWrapper);
|
|
rb_define_method(rb_cInternalObjectWrapper, "type", iow_type, 0);
|
|
rb_define_method(rb_cInternalObjectWrapper, "inspect", iow_inspect, 0);
|
|
rb_define_method(rb_cInternalObjectWrapper, "internal_object_id", iow_internal_object_id, 0);
|
|
|
|
Init_object_tracing(rb_mObjSpace);
|
|
Init_objspace_dump(rb_mObjSpace);
|
|
}
|