/* This file is included by symbol.c */ #include "id_table.h" #ifndef ID_TABLE_DEBUG #define ID_TABLE_DEBUG 0 #endif #if ID_TABLE_DEBUG == 0 #undef NDEBUG #define NDEBUG #endif #include "ruby_assert.h" typedef rb_id_serial_t id_key_t; static inline ID key2id(id_key_t key) { return rb_id_serial_to_id(key); } static inline id_key_t id2key(ID id) { return rb_id_to_serial(id); } /* simple open addressing with quadratic probing. uses mark-bit on collisions - need extra 1 bit, ID is strictly 3 bits larger than rb_id_serial_t */ typedef struct rb_id_item { id_key_t key; #if SIZEOF_VALUE == 8 int collision; #endif VALUE val; } item_t; struct rb_id_table { int capa; int num; int used; item_t *items; }; #if SIZEOF_VALUE == 8 #define ITEM_GET_KEY(tbl, i) ((tbl)->items[i].key) #define ITEM_KEY_ISSET(tbl, i) ((tbl)->items[i].key) #define ITEM_COLLIDED(tbl, i) ((tbl)->items[i].collision) #define ITEM_SET_COLLIDED(tbl, i) ((tbl)->items[i].collision = 1) static inline void ITEM_SET_KEY(struct rb_id_table *tbl, int i, id_key_t key) { tbl->items[i].key = key; } #else #define ITEM_GET_KEY(tbl, i) ((tbl)->items[i].key >> 1) #define ITEM_KEY_ISSET(tbl, i) ((tbl)->items[i].key > 1) #define ITEM_COLLIDED(tbl, i) ((tbl)->items[i].key & 1) #define ITEM_SET_COLLIDED(tbl, i) ((tbl)->items[i].key |= 1) static inline void ITEM_SET_KEY(struct rb_id_table *tbl, int i, id_key_t key) { tbl->items[i].key = (key << 1) | ITEM_COLLIDED(tbl, i); } #endif static inline int round_capa(int capa) { /* minsize is 4 */ capa >>= 2; capa |= capa >> 1; capa |= capa >> 2; capa |= capa >> 4; capa |= capa >> 8; capa |= capa >> 16; return (capa + 1) << 2; } struct rb_id_table * rb_id_table_init(struct rb_id_table *tbl, size_t s_capa) { int capa = (int)s_capa; MEMZERO(tbl, struct rb_id_table, 1); if (capa > 0) { capa = round_capa(capa); tbl->capa = (int)capa; tbl->items = ZALLOC_N(item_t, capa); } return tbl; } struct rb_id_table * rb_id_table_create(size_t capa) { struct rb_id_table *tbl = ALLOC(struct rb_id_table); return rb_id_table_init(tbl, capa); } void rb_id_table_free_items(struct rb_id_table *tbl) { xfree(tbl->items); } void rb_id_table_free(struct rb_id_table *tbl) { xfree(tbl->items); xfree(tbl); } void rb_id_table_clear(struct rb_id_table *tbl) { tbl->num = 0; tbl->used = 0; MEMZERO(tbl->items, item_t, tbl->capa); } size_t rb_id_table_size(const struct rb_id_table *tbl) { return (size_t)tbl->num; } size_t rb_id_table_memsize(const struct rb_id_table *tbl) { return sizeof(item_t) * tbl->capa + sizeof(struct rb_id_table); } static int hash_table_index(struct rb_id_table* tbl, id_key_t key) { if (tbl->capa > 0) { int mask = tbl->capa - 1; int ix = key & mask; int d = 1; while (key != ITEM_GET_KEY(tbl, ix)) { if (!ITEM_COLLIDED(tbl, ix)) return -1; ix = (ix + d) & mask; d++; } return ix; } return -1; } static void hash_table_raw_insert(struct rb_id_table *tbl, id_key_t key, VALUE val) { int mask = tbl->capa - 1; int ix = key & mask; int d = 1; RUBY_ASSERT(key != 0); while (ITEM_KEY_ISSET(tbl, ix)) { ITEM_SET_COLLIDED(tbl, ix); ix = (ix + d) & mask; d++; } tbl->num++; if (!ITEM_COLLIDED(tbl, ix)) { tbl->used++; } ITEM_SET_KEY(tbl, ix, key); tbl->items[ix].val = val; } static int hash_delete_index(struct rb_id_table *tbl, int ix) { if (ix >= 0) { if (!ITEM_COLLIDED(tbl, ix)) { tbl->used--; } tbl->num--; ITEM_SET_KEY(tbl, ix, 0); tbl->items[ix].val = 0; return TRUE; } else { return FALSE; } } static void hash_table_extend(struct rb_id_table* tbl) { if (tbl->used + (tbl->used >> 1) >= tbl->capa) { int new_cap = round_capa(tbl->num + (tbl->num >> 1)); int i; item_t* old; struct rb_id_table tmp_tbl = {0, 0, 0}; if (new_cap < tbl->capa) { new_cap = round_capa(tbl->used + (tbl->used >> 1)); } tmp_tbl.capa = new_cap; tmp_tbl.items = ZALLOC_N(item_t, new_cap); for (i = 0; i < tbl->capa; i++) { id_key_t key = ITEM_GET_KEY(tbl, i); if (key != 0) { hash_table_raw_insert(&tmp_tbl, key, tbl->items[i].val); } } old = tbl->items; *tbl = tmp_tbl; xfree(old); } } #if ID_TABLE_DEBUG && 0 static void hash_table_show(struct rb_id_table *tbl) { const id_key_t *keys = tbl->keys; const int capa = tbl->capa; int i; fprintf(stderr, "tbl: %p (capa: %d, num: %d, used: %d)\n", tbl, tbl->capa, tbl->num, tbl->used); for (i=0; i [%d] %s %d\n", i, rb_id2name(key2id(keys[i])), (int)keys[i]); } } } #endif int rb_id_table_lookup(struct rb_id_table *tbl, ID id, VALUE *valp) { id_key_t key = id2key(id); int index = hash_table_index(tbl, key); if (index >= 0) { *valp = tbl->items[index].val; return TRUE; } else { return FALSE; } } static int rb_id_table_insert_key(struct rb_id_table *tbl, const id_key_t key, const VALUE val) { const int index = hash_table_index(tbl, key); if (index >= 0) { tbl->items[index].val = val; } else { hash_table_extend(tbl); hash_table_raw_insert(tbl, key, val); } return TRUE; } int rb_id_table_insert(struct rb_id_table *tbl, ID id, VALUE val) { return rb_id_table_insert_key(tbl, id2key(id), val); } int rb_id_table_delete(struct rb_id_table *tbl, ID id) { const id_key_t key = id2key(id); int index = hash_table_index(tbl, key); return hash_delete_index(tbl, index); } void rb_id_table_foreach(struct rb_id_table *tbl, rb_id_table_foreach_func_t *func, void *data) { int i, capa = tbl->capa; for (i=0; iitems[i].val, data); RUBY_ASSERT(key != 0); if (ret == ID_TABLE_DELETE) hash_delete_index(tbl, i); else if (ret == ID_TABLE_STOP) return; } } } void rb_id_table_foreach_values(struct rb_id_table *tbl, rb_id_table_foreach_values_func_t *func, void *data) { int i, capa = tbl->capa; for (i=0; iitems[i].val, data); if (ret == ID_TABLE_DELETE) hash_delete_index(tbl, i); else if (ret == ID_TABLE_STOP) return; } } } void rb_id_table_foreach_values_with_replace(struct rb_id_table *tbl, rb_id_table_foreach_values_func_t *func, rb_id_table_update_value_callback_func_t *replace, void *data) { int i, capa = tbl->capa; for (i = 0; i < capa; i++) { if (ITEM_KEY_ISSET(tbl, i)) { enum rb_id_table_iterator_result ret = (*func)(tbl->items[i].val, data); if (ret == ID_TABLE_REPLACE) { VALUE val = tbl->items[i].val; ret = (*replace)(&val, data, TRUE); tbl->items[i].val = val; } if (ret == ID_TABLE_STOP) return; } } } static void managed_id_table_free(void *data) { struct rb_id_table *tbl = (struct rb_id_table *)data; rb_id_table_free_items(tbl); } static size_t managed_id_table_memsize(const void *data) { const struct rb_id_table *tbl = (const struct rb_id_table *)data; return rb_id_table_memsize(tbl) - sizeof(struct rb_id_table); } static const rb_data_type_t managed_id_table_type = { .wrap_struct_name = "VM/managed_id_table", .function = { .dmark = NULL, // Nothing to mark .dfree = (RUBY_DATA_FUNC)managed_id_table_free, .dsize = managed_id_table_memsize, }, .flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE, }; static inline struct rb_id_table * managed_id_table_ptr(VALUE obj) { return RTYPEDDATA_GET_DATA(obj); } VALUE rb_managed_id_table_new(size_t capa) { struct rb_id_table *tbl; VALUE obj = TypedData_Make_Struct(0, struct rb_id_table, &managed_id_table_type, tbl); rb_id_table_init(tbl, capa); return obj; } static enum rb_id_table_iterator_result managed_id_table_dup_i(ID id, VALUE val, void *data) { struct rb_id_table *new_tbl = (struct rb_id_table *)data; rb_id_table_insert(new_tbl, id, val); return ID_TABLE_CONTINUE; } VALUE rb_managed_id_table_dup(VALUE old_table) { RUBY_ASSERT(RB_TYPE_P(old_table, T_DATA)); RUBY_ASSERT(rb_typeddata_inherited_p(RTYPEDDATA_TYPE(old_table), &managed_id_table_type)); struct rb_id_table *new_tbl; VALUE obj = TypedData_Make_Struct(0, struct rb_id_table, &managed_id_table_type, new_tbl); struct rb_id_table *old_tbl = RTYPEDDATA_GET_DATA(old_table); rb_id_table_init(new_tbl, old_tbl->num + 1); rb_id_table_foreach(old_tbl, managed_id_table_dup_i, new_tbl); return obj; } int rb_managed_id_table_lookup(VALUE table, ID id, VALUE *valp) { RUBY_ASSERT(RB_TYPE_P(table, T_DATA)); RUBY_ASSERT(rb_typeddata_inherited_p(RTYPEDDATA_TYPE(table), &managed_id_table_type)); return rb_id_table_lookup(RTYPEDDATA_GET_DATA(table), id, valp); } int rb_managed_id_table_insert(VALUE table, ID id, VALUE val) { RUBY_ASSERT(RB_TYPE_P(table, T_DATA)); RUBY_ASSERT(rb_typeddata_inherited_p(RTYPEDDATA_TYPE(table), &managed_id_table_type)); return rb_id_table_insert(RTYPEDDATA_GET_DATA(table), id, val); } size_t rb_managed_id_table_size(VALUE table) { RUBY_ASSERT(RB_TYPE_P(table, T_DATA)); RUBY_ASSERT(rb_typeddata_inherited_p(RTYPEDDATA_TYPE(table), &managed_id_table_type)); return rb_id_table_size(RTYPEDDATA_GET_DATA(table)); } void rb_managed_id_table_foreach(VALUE table, rb_id_table_foreach_func_t *func, void *data) { RUBY_ASSERT(RB_TYPE_P(table, T_DATA)); RUBY_ASSERT(rb_typeddata_inherited_p(RTYPEDDATA_TYPE(table), &managed_id_table_type)); rb_id_table_foreach(RTYPEDDATA_GET_DATA(table), func, data); }