* complex.c: revised rdoc.

* rational.c: ditto.

	* numeric.c: ditto.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@23870 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
tadf 2009-06-27 07:46:57 +00:00
parent 4365f6710d
commit b2fb759624
4 changed files with 500 additions and 559 deletions

View File

@ -1,3 +1,11 @@
Sat Jun 27 16:45:10 2009 Tadayoshi Funaba <tadf@dotrb.org>
* complex.c: revised rdoc.
* rational.c: ditto.
* numeric.c: ditto.
Sat Jun 27 13:44:48 2009 Kouhei Sutou <kou@cozmixng.org>
* NEWS, lib/rss/maker/base.rb, test/rss/test_maker_2.0.rb: add

189
complex.c
View File

@ -382,8 +382,8 @@ nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
/*
* call-seq:
* Complex.rect(real[, imag]) => complex
* Complex.rectangular(real[, imag]) => complex
* Complex.rect(real[, imag]) -> complex
* Complex.rectangular(real[, imag]) -> complex
*
* Returns a complex object which denotes the given rectangular form.
*/
@ -420,6 +420,12 @@ f_complex_new2(VALUE klass, VALUE x, VALUE y)
return nucomp_s_canonicalize_internal(klass, x, y);
}
/*
* call-seq:
* Complex(x[, y]) -> numeric
*
* Returns x+i*y;
*/
static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
{
@ -528,7 +534,7 @@ f_complex_polar(VALUE klass, VALUE x, VALUE y)
/*
* call-seq:
* Complex.polar(abs, arg) => complex
* Complex.polar(abs, arg) -> complex
*
* Returns a complex object which denotes the given polar form.
*/
@ -540,7 +546,7 @@ nucomp_s_polar(VALUE klass, VALUE abs, VALUE arg)
/*
* call-seq:
* cmp.real => real
* cmp.real -> real
*
* Returns the real part.
*/
@ -553,8 +559,8 @@ nucomp_real(VALUE self)
/*
* call-seq:
* cmp.imag => real
* cmp.imaginary => real
* cmp.imag -> real
* cmp.imaginary -> real
*
* Returns the imaginary part.
*/
@ -567,7 +573,7 @@ nucomp_imag(VALUE self)
/*
* call-seq:
* -cmp => complex
* -cmp -> complex
*
* Returns negation of the value.
*/
@ -581,7 +587,7 @@ nucomp_negate(VALUE self)
/*
* call-seq:
* cmp + numeric => complex
* cmp + numeric -> complex
*
* Performs addition.
*/
@ -609,7 +615,7 @@ nucomp_add(VALUE self, VALUE other)
/*
* call-seq:
* cmp - numeric => complex
* cmp - numeric -> complex
*
* Performs subtraction.
*/
@ -637,7 +643,7 @@ nucomp_sub(VALUE self, VALUE other)
/*
* call-seq:
* cmp * numeric => complex
* cmp * numeric -> complex
*
* Performs multiplication.
*/
@ -697,8 +703,8 @@ nucomp_divide(VALUE self, VALUE other,
/*
* call-seq:
* cmp / numeric => complex
* cmp.quo(numeric) => complex
* cmp / numeric -> complex
* cmp.quo(numeric) -> complex
*
* Performs division.
*
@ -717,9 +723,9 @@ nucomp_div(VALUE self, VALUE other)
/*
* call-seq:
* cmp.fdiv(numeric) => complex
* cmp.fdiv(numeric) -> complex
*
* Performs division as each part is a float, never returns float.
* Performs division as each part is a float, never returns a float.
*
* For example:
*
@ -733,14 +739,14 @@ nucomp_fdiv(VALUE self, VALUE other)
/*
* call-seq:
* cmp ** numeric => complex
* cmp ** numeric -> complex
*
* Performs exponentiation.
*
* For example:
*
* Complex('i')**2 #=> (-1+0i)
* Complex(-8)**Rational(1,3) #=> (1.0000000000000002+1.7320508075688772i)
* Complex('i') ** 2 #=> (-1+0i)
* Complex(-8) ** Rational(1,3) #=> (1.0000000000000002+1.7320508075688772i)
*/
static VALUE
nucomp_expt(VALUE self, VALUE other)
@ -806,7 +812,7 @@ nucomp_expt(VALUE self, VALUE other)
/*
* call-seq:
* cmp == object => true or false
* cmp == object -> true or false
*
* Returns true if cmp equals object numerically.
*/
@ -827,6 +833,7 @@ nucomp_equal_p(VALUE self, VALUE other)
return f_equal_p(other, self);
}
/* :nodoc: */
static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
@ -842,8 +849,8 @@ nucomp_coerce(VALUE self, VALUE other)
/*
* call-seq:
* cmp.abs => float
* cmp.magnitude => float
* cmp.abs -> real
* cmp.magnitude -> real
*
* Returns the absolute part of its polar form.
*/
@ -856,7 +863,7 @@ nucomp_abs(VALUE self)
/*
* call-seq:
* cmp.abs2 => real
* cmp.abs2 -> real
*
* Returns square of the absolute value.
*/
@ -870,9 +877,9 @@ nucomp_abs2(VALUE self)
/*
* call-seq:
* cmp.arg => float
* cmp.angle => float
* cmp.phase => float
* cmp.arg -> float
* cmp.angle -> float
* cmp.phase -> float
*
* Returns the angle part of its polar form.
*/
@ -885,10 +892,10 @@ nucomp_arg(VALUE self)
/*
* call-seq:
* cmp.rect => array
* cmp.rectangular => array
* cmp.rect -> array
* cmp.rectangular -> array
*
* Returns an array [cmp.real, cmp.imag].
* Returns an array; [cmp.real, cmp.imag].
*/
static VALUE
nucomp_rect(VALUE self)
@ -899,9 +906,9 @@ nucomp_rect(VALUE self)
/*
* call-seq:
* cmp.polar => array
* cmp.polar -> array
*
* Returns an array [cmp.abs, cmp.arg].
* Returns an array; [cmp.abs, cmp.arg].
*/
static VALUE
nucomp_polar(VALUE self)
@ -911,8 +918,8 @@ nucomp_polar(VALUE self)
/*
* call-seq:
* cmp.conj => complex
* cmp.conjucate => complex
* cmp.conj -> complex
* cmp.conjucate -> complex
*
* Returns the complex conjucate.
*/
@ -924,6 +931,7 @@ nucomp_conj(VALUE self)
}
#if 0
/* :nodoc: */
static VALUE
nucomp_true(VALUE self)
{
@ -933,7 +941,7 @@ nucomp_true(VALUE self)
/*
* call-seq:
* cmp.real? => false
* cmp.real? -> false
*
* Returns false.
*/
@ -944,6 +952,7 @@ nucomp_false(VALUE self)
}
#if 0
/* :nodoc: */
static VALUE
nucomp_exact_p(VALUE self)
{
@ -951,6 +960,7 @@ nucomp_exact_p(VALUE self)
return f_boolcast(f_exact_p(dat->real) && f_exact_p(dat->imag));
}
/* :nodoc: */
static VALUE
nucomp_inexact_p(VALUE self)
{
@ -962,13 +972,11 @@ extern VALUE rb_lcm(VALUE x, VALUE y);
/*
* call-seq:
* cmp.denominator => integer
* cmp.denominator -> integer
*
* Returns the denominator.
* Returns the denominator (lcm of both denominator, real and imag).
*
* This means cmp.real.denominator.lcm(cmp.denominator).
*
* See Complex#numerator.
* See numerator.
*/
static VALUE
nucomp_denominator(VALUE self)
@ -979,19 +987,23 @@ nucomp_denominator(VALUE self)
/*
* call-seq:
* cmp.numerator => numeric
* cmp.numerator -> numeric
*
* Returns the numerator.
*
* For example:
*
* 1 2 3+4i <- numerator
* - + -i -> ----
* 2 3 6 <- denominator
*
* c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
* n = c.numerator #=> (3+4i)
* d = c.denominator #=> 6
* n/d #=> ((1/2)+(2/3)*i)
* n / d #=> ((1/2)+(2/3)*i)
* Complex(Rational(n.real, d), Rational(n.imag, d))
* #=> ((1/2)+(2/3)*i)
* See Complex#denominator.
* See denominator.
*/
static VALUE
nucomp_numerator(VALUE self)
@ -1008,6 +1020,7 @@ nucomp_numerator(VALUE self)
f_div(cd, f_denominator(dat->imag))));
}
/* :nodoc: */
static VALUE
nucomp_hash(VALUE self)
{
@ -1024,6 +1037,7 @@ nucomp_hash(VALUE self)
return LONG2FIX(v);
}
/* :nodoc: */
static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
@ -1093,7 +1107,7 @@ nucomp_format(VALUE self, VALUE (*func)(VALUE))
/*
* call-seq:
* cmp.to_s => string
* cmp.to_s -> string
*
* Returns the value as a string.
*/
@ -1105,7 +1119,7 @@ nucomp_to_s(VALUE self)
/*
* call-seq:
* cmp.inspect => string
* cmp.inspect -> string
*
* Returns the value as a string for inspection.
*/
@ -1121,6 +1135,7 @@ nucomp_inspect(VALUE self)
return s;
}
/* :nodoc: */
static VALUE
nucomp_marshal_dump(VALUE self)
{
@ -1132,6 +1147,7 @@ nucomp_marshal_dump(VALUE self)
return a;
}
/* :nodoc: */
static VALUE
nucomp_marshal_load(VALUE self, VALUE a)
{
@ -1175,9 +1191,9 @@ rb_Complex(VALUE x, VALUE y)
/*
* call-seq:
* cmp.to_i => integer
* cmp.to_i -> integer
*
* Returns the value as an integer if can.
* Returns the value as an integer if possible.
*/
static VALUE
nucomp_to_i(VALUE self)
@ -1194,9 +1210,9 @@ nucomp_to_i(VALUE self)
/*
* call-seq:
* cmp.to_f => float
* cmp.to_f -> float
*
* Returns the value as a float if can.
* Returns the value as a float if possible.
*/
static VALUE
nucomp_to_f(VALUE self)
@ -1213,9 +1229,9 @@ nucomp_to_f(VALUE self)
/*
* call-seq:
* cmp.to_r => rational
* cmp.to_r -> rational
*
* Returns the value as a rational if can.
* Returns the value as a rational if possible.
*/
static VALUE
nucomp_to_r(VALUE self)
@ -1232,7 +1248,7 @@ nucomp_to_r(VALUE self)
/*
* call-seq:
* nil.to_c => complex
* nil.to_c -> (0+0i)
*
* Returns zero as a complex.
*/
@ -1244,7 +1260,7 @@ nilclass_to_c(VALUE self)
/*
* call-seq:
* num.to_c => complex
* num.to_c -> complex
*
* Returns the value as a complex.
*/
@ -1425,9 +1441,12 @@ string_to_c_strict(VALUE self)
/*
* call-seq:
* str.to_c => complex
* str.to_c -> complex
*
* Returns a complex which denotes string form.
* Returns a complex which denotes the string form. The parser
* ignores leading whitespaces and trailing garbage. Any digit
* sequences can be separeted by an underscore. Returns zero for null
* string.
*
* For example:
*
@ -1547,7 +1566,7 @@ nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
/*
* call-seq:
* num.real => self
* num.real -> self
*
* Returns self.
*/
@ -1559,8 +1578,8 @@ numeric_real(VALUE self)
/*
* call-seq:
* num.imag => 0
* num.imaginary => 0
* num.imag -> 0
* num.imaginary -> 0
*
* Returns zero.
*/
@ -1572,7 +1591,7 @@ numeric_imag(VALUE self)
/*
* call-seq:
* num.abs2 => real
* num.abs2 -> real
*
* Returns square of self.
*/
@ -1586,9 +1605,9 @@ numeric_abs2(VALUE self)
/*
* call-seq:
* num.arg => float
* num.angle => float
* num.phase => float
* num.arg -> float
* num.angle -> float
* num.phase -> float
*
* Returns 0 if the value is positive, pi otherwise.
*/
@ -1602,9 +1621,9 @@ numeric_arg(VALUE self)
/*
* call-seq:
* num.rect => array
* num.rect -> array
*
* Returns an array [num, 0].
* Returns an array; [num, 0].
*/
static VALUE
numeric_rect(VALUE self)
@ -1614,9 +1633,9 @@ numeric_rect(VALUE self)
/*
* call-seq:
* num.polar => array
* num.polar -> array
*
* Returns an array [num.abs, num.arg].
* Returns an array; [num.abs, num.arg].
*/
static VALUE
numeric_polar(VALUE self)
@ -1626,8 +1645,8 @@ numeric_polar(VALUE self)
/*
* call-seq:
* num.conj => self
* num.conjucate => self
* num.conj -> self
* num.conjucate -> self
*
* Returns self.
*/
@ -1638,22 +1657,36 @@ numeric_conj(VALUE self)
}
/*
* Complex provides complex number.
* it's simple. it's not real. but really numeric.
* A complex number can be represented as a paired real number with
* imaginary unit; a+bi. Where a is real part, b is imaginary part
* and i is imaginary unit. Real a equals complex a+0i
* mathematically.
*
* Complex(0) #=> (0+0i)
* Complex(1, 2) #=> (1+2i)
* Complex.rect(1, 2) #=> (1+2i)
* Complex(1.1, 3.3) #=> (1.1+3.3i)
* Complex(Rational(1, 2), Rational(2, 3))
* #=> ((1/2)+(2/3)*i)
* Complex.polar(1, 2) #=> (-0.4161468365471424+0.9092974268256817i)
* In ruby, you can create complex object with Complex, Complex::rect,
* Complex::polar or to_c method.
*
* Complex('i') #=> (0+1i)
* Complex('1+2i') #=> (1+2i)
* Complex('1.1+3.3i') #=> (1.1+3.3i)
* Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
* Complex(1) #=> (1+0i)
* Complex(2, 3) #=> (2+3i)
* Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
* 3.to_c #=> (3+0i)
*
* You can also create complex object from floating-point numbers or
* strings.
*
* Complex(0.3) #=> (0.3+0i)
* Complex('0.3-0.5i') #=> (0.3-0.5i)
* Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
* Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
*
* 0.3.to_c #=> (0.3+0i)
* '0.3-0.5i'.to_c #=> (0.3-0.5i)
* '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
* '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
*
* A complex object is either an exact or an inexact number.
*
* Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
* Complex(1, 1) / 2.0 #=> (0.5+0.5i)
*/
void
Init_Complex(void)

222
numeric.c
View File

@ -103,7 +103,7 @@ rb_num_zerodiv(void)
/*
* call-seq:
* num.coerce(numeric) => array
* num.coerce(numeric) -> array
*
* If <i>aNumeric</i> is the same type as <i>num</i>, returns an array
* containing <i>aNumeric</i> and <i>num</i>. Otherwise, returns an
@ -225,7 +225,7 @@ num_init_copy(VALUE x, VALUE y)
/*
* call-seq:
* +num => num
* +num -> num
*
* Unary Plus---Returns the receiver's value.
*/
@ -238,7 +238,7 @@ num_uplus(VALUE num)
/*
* call-seq:
* -num => numeric
* -num -> numeric
*
* Unary Minus---Returns the receiver's value, negated.
*/
@ -256,7 +256,7 @@ num_uminus(VALUE num)
/*
* call-seq:
* num.quo(numeric) => real
* num.quo(numeric) -> real
*
* Returns most exact division (rational for integers, float for floats).
*/
@ -270,7 +270,7 @@ num_quo(VALUE x, VALUE y)
/*
* call-seq:
* num.fdiv(numeric) => float
* num.fdiv(numeric) -> float
*
* Returns float division.
*/
@ -284,7 +284,7 @@ num_fdiv(VALUE x, VALUE y)
/*
* call-seq:
* num.div(numeric) => integer
* num.div(numeric) -> integer
*
* Uses <code>/</code> to perform division, then converts the result to
* an integer. <code>numeric</code> does not define the <code>/</code>
@ -306,7 +306,7 @@ num_div(VALUE x, VALUE y)
/*
* call-seq:
* num.modulo(numeric) => real
* num.modulo(numeric) -> real
*
* x.modulo(y) means x-y*(x/y).floor
*
@ -326,7 +326,7 @@ num_modulo(VALUE x, VALUE y)
/*
* call-seq:
* num.remainder(numeric) => real
* num.remainder(numeric) -> real
*
* x.remainder(y) means x-y*(x/y).truncate
*
@ -350,7 +350,7 @@ num_remainder(VALUE x, VALUE y)
/*
* call-seq:
* num.divmod(numeric) => array
* num.divmod(numeric) -> array
*
* Returns an array containing the quotient and modulus obtained by
* dividing <i>num</i> by <i>numeric</i>. If <code>q, r =
@ -397,7 +397,7 @@ num_divmod(VALUE x, VALUE y)
/*
* call-seq:
* num.real? => true or false
* num.real? -> true or false
*
* Returns <code>true</code> if <i>num</i> is a <code>Real</code>
* (i.e. non <code>Complex</code>).
@ -411,7 +411,7 @@ num_real_p(VALUE num)
/*
* call-seq:
* num.integer? => true or false
* num.integer? -> true or false
*
* Returns <code>true</code> if <i>num</i> is an <code>Integer</code>
* (including <code>Fixnum</code> and <code>Bignum</code>).
@ -425,8 +425,8 @@ num_int_p(VALUE num)
/*
* call-seq:
* num.abs => numeric
* num.magnitude => numeric
* num.abs -> numeric
* num.magnitude -> numeric
*
* Returns the absolute value of <i>num</i>.
*
@ -447,7 +447,7 @@ num_abs(VALUE num)
/*
* call-seq:
* num.zero? => true or false
* num.zero? -> true or false
*
* Returns <code>true</code> if <i>num</i> has a zero value.
*/
@ -464,7 +464,7 @@ num_zero_p(VALUE num)
/*
* call-seq:
* num.nonzero? => self or nil
* num.nonzero? -> self or nil
*
* Returns <i>self</i> if <i>num</i> is not zero, <code>nil</code>
* otherwise. This behavior is useful when chaining comparisons:
@ -485,7 +485,7 @@ num_nonzero_p(VALUE num)
/*
* call-seq:
* num.to_int => integer
* num.to_int -> integer
*
* Invokes the child class's <code>to_i</code> method to convert
* <i>num</i> to an integer.
@ -519,7 +519,7 @@ rb_float_new(double d)
/*
* call-seq:
* flt.to_s => string
* flt.to_s -> string
*
* Returns a string containing a representation of self. As well as a
* fixed or exponential form of the number, the call may return
@ -573,7 +573,7 @@ flo_coerce(VALUE x, VALUE y)
/*
* call-seq:
* -float => float
* -float -> float
*
* Returns float, negated.
*/
@ -586,7 +586,7 @@ flo_uminus(VALUE flt)
/*
* call-seq:
* float + other => float
* float + other -> float
*
* Returns a new float which is the sum of <code>float</code>
* and <code>other</code>.
@ -609,7 +609,7 @@ flo_plus(VALUE x, VALUE y)
/*
* call-seq:
* float + other => float
* float + other -> float
*
* Returns a new float which is the difference of <code>float</code>
* and <code>other</code>.
@ -632,7 +632,7 @@ flo_minus(VALUE x, VALUE y)
/*
* call-seq:
* float * other => float
* float * other -> float
*
* Returns a new float which is the product of <code>float</code>
* and <code>other</code>.
@ -655,7 +655,7 @@ flo_mul(VALUE x, VALUE y)
/*
* call-seq:
* float / other => float
* float / other -> float
*
* Returns a new float which is the result of dividing
* <code>float</code> by <code>other</code>.
@ -718,8 +718,8 @@ flodivmod(double x, double y, double *divp, double *modp)
/*
* call-seq:
* flt % other => float
* flt.modulo(other) => float
* flt % other -> float
* flt.modulo(other) -> float
*
* Return the modulo after division of <code>flt</code> by <code>other</code>.
*
@ -767,7 +767,7 @@ dbl2ival(double d)
/*
* call-seq:
* flt.divmod(numeric) => array
* flt.divmod(numeric) -> array
*
* See <code>Numeric#divmod</code>.
*/
@ -800,7 +800,7 @@ flo_divmod(VALUE x, VALUE y)
/*
* call-seq:
*
* flt ** other => float
* flt ** other -> float
*
* Raises <code>float</code> the <code>other</code> power.
*
@ -825,7 +825,7 @@ flo_pow(VALUE x, VALUE y)
/*
* call-seq:
* num.eql?(numeric) => true or false
* num.eql?(numeric) -> true or false
*
* Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
* same type and have equal values.
@ -845,7 +845,7 @@ num_eql(VALUE x, VALUE y)
/*
* call-seq:
* num <=> other => 0 or nil
* num <=> other -> 0 or nil
*
* Returns zero if <i>num</i> equals <i>other</i>, <code>nil</code>
* otherwise.
@ -867,7 +867,7 @@ num_equal(VALUE x, VALUE y)
/*
* call-seq:
* flt == obj => true or false
* flt == obj -> true or false
*
* Returns <code>true</code> only if <i>obj</i> has the same value
* as <i>flt</i>. Contrast this with <code>Float#eql?</code>, which
@ -907,7 +907,7 @@ flo_eq(VALUE x, VALUE y)
/*
* call-seq:
* flt.hash => integer
* flt.hash -> integer
*
* Returns a hash code for this float.
*/
@ -935,7 +935,7 @@ rb_dbl_cmp(double a, double b)
/*
* call-seq:
* flt <=> real => -1, 0, +1
* flt <=> real -> -1, 0, +1
*
* Returns -1, 0, or +1 depending on whether <i>flt</i> is less than,
* equal to, or greater than <i>real</i>. This is the basis for the
@ -979,7 +979,7 @@ flo_cmp(VALUE x, VALUE y)
/*
* call-seq:
* flt > real => true or false
* flt > real -> true or false
*
* <code>true</code> if <code>flt</code> is greater than <code>real</code>.
*/
@ -1017,7 +1017,7 @@ flo_gt(VALUE x, VALUE y)
/*
* call-seq:
* flt >= real => true or false
* flt >= real -> true or false
*
* <code>true</code> if <code>flt</code> is greater than
* or equal to <code>real</code>.
@ -1056,7 +1056,7 @@ flo_ge(VALUE x, VALUE y)
/*
* call-seq:
* flt < real => true or false
* flt < real -> true or false
*
* <code>true</code> if <code>flt</code> is less than <code>real</code>.
*/
@ -1094,7 +1094,7 @@ flo_lt(VALUE x, VALUE y)
/*
* call-seq:
* flt <= rael => true or false
* flt <= rael -> true or false
*
* <code>true</code> if <code>flt</code> is less than
* or equal to <code>real</code>.
@ -1133,7 +1133,7 @@ flo_le(VALUE x, VALUE y)
/*
* call-seq:
* flt.eql?(obj) => true or false
* flt.eql?(obj) -> true or false
*
* Returns <code>true</code> only if <i>obj</i> is a
* <code>Float</code> with the same value as <i>flt</i>. Contrast this
@ -1159,7 +1159,7 @@ flo_eql(VALUE x, VALUE y)
/*
* call-seq:
* flt.to_f => self
* flt.to_f -> self
*
* As <code>flt</code> is already a float, returns <i>self</i>.
*/
@ -1172,8 +1172,8 @@ flo_to_f(VALUE num)
/*
* call-seq:
* flt.abs => float
* flt.magnitude => float
* flt.abs -> float
* flt.magnitude -> float
*
* Returns the absolute value of <i>flt</i>.
*
@ -1191,7 +1191,7 @@ flo_abs(VALUE flt)
/*
* call-seq:
* flt.zero? => true or false
* flt.zero? -> true or false
*
* Returns <code>true</code> if <i>flt</i> is 0.0.
*
@ -1208,7 +1208,7 @@ flo_zero_p(VALUE num)
/*
* call-seq:
* flt.nan? => true or false
* flt.nan? -> true or false
*
* Returns <code>true</code> if <i>flt</i> is an invalid IEEE floating
* point number.
@ -1229,7 +1229,7 @@ flo_is_nan_p(VALUE num)
/*
* call-seq:
* flt.infinite? => nil, -1, +1
* flt.infinite? -> nil, -1, +1
*
* Returns <code>nil</code>, -1, or +1 depending on whether <i>flt</i>
* is finite, -infinity, or +infinity.
@ -1253,7 +1253,7 @@ flo_is_infinite_p(VALUE num)
/*
* call-seq:
* flt.finite? => true or false
* flt.finite? -> true or false
*
* Returns <code>true</code> if <i>flt</i> is a valid IEEE floating
* point number (it is not infinite, and <code>nan?</code> is
@ -1279,7 +1279,7 @@ flo_is_finite_p(VALUE num)
/*
* call-seq:
* flt.floor => integer
* flt.floor -> integer
*
* Returns the largest integer less than or equal to <i>flt</i>.
*
@ -1304,7 +1304,7 @@ flo_floor(VALUE num)
/*
* call-seq:
* flt.ceil => integer
* flt.ceil -> integer
*
* Returns the smallest <code>Integer</code> greater than or equal to
* <i>flt</i>.
@ -1330,10 +1330,10 @@ flo_ceil(VALUE num)
/*
* call-seq:
* flt.round([ndigits]) => integer or float
* flt.round([ndigits]) -> integer or float
*
* Rounds <i>flt</i> to a given precision in decimal digits (default 0 digits).
* Precision may be negative. Returns a a floating point number when ndigits
* Precision may be negative. Returns a floating point number when ndigits
* is more than one.
*
* 1.5.round #=> 2
@ -1379,9 +1379,9 @@ flo_round(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
* flt.to_i => integer
* flt.to_int => integer
* flt.truncate => integer
* flt.to_i -> integer
* flt.to_int -> integer
* flt.truncate -> integer
*
* Returns <i>flt</i> truncated to an <code>Integer</code>.
*/
@ -1404,7 +1404,7 @@ flo_truncate(VALUE num)
/*
* call-seq:
* num.floor => integer
* num.floor -> integer
*
* Returns the largest integer less than or equal to <i>num</i>.
* <code>Numeric</code> implements this by converting <i>anInteger</i>
@ -1423,7 +1423,7 @@ num_floor(VALUE num)
/*
* call-seq:
* num.ceil => integer
* num.ceil -> integer
*
* Returns the smallest <code>Integer</code> greater than or equal to
* <i>num</i>. Class <code>Numeric</code> achieves this by converting
@ -1444,10 +1444,10 @@ num_ceil(VALUE num)
/*
* call-seq:
* num.round([ndigits]) => integer or float
* num.round([ndigits]) -> integer or float
*
* Rounds <i>num</i> to a given precision in decimal digits (default 0 digits).
* Precision may be negative. Returns a a floating point number when ndigits
* Precision may be negative. Returns a floating point number when ndigits
* is more than one. <code>Numeric</code> implements this by converting itself
* to a <code>Float</code> and invoking <code>Float#round</code>.
*/
@ -1460,7 +1460,7 @@ num_round(int argc, VALUE* argv, VALUE num)
/*
* call-seq:
* num.truncate => integer
* num.truncate -> integer
*
* Returns <i>num</i> truncated to an integer. <code>Numeric</code>
* implements this by converting its value to a float and invoking
@ -1504,8 +1504,8 @@ ruby_float_step(VALUE from, VALUE to, VALUE step, int excl)
/*
* call-seq:
* num.step(limit[, step]) {|i| block } => self
* num.step(limit[, step]) => enumerator
* num.step(limit[, step]) {|i| block } -> self
* num.step(limit[, step]) -> enumerator
*
* Invokes <em>block</em> with the sequence of numbers starting at
* <i>num</i>, incremented by <i>step</i> (default 1) on each
@ -1801,12 +1801,12 @@ rb_num2ull(VALUE val)
/*
* call-seq:
* int.to_i => integer
* int.to_int => integer
* int.floor => integer
* int.ceil => integer
* int.round => integer
* int.truncate => integer
* int.to_i -> integer
* int.to_int -> integer
* int.floor -> integer
* int.ceil -> integer
* int.round -> integer
* int.truncate -> integer
*
* As <i>int</i> is already an <code>Integer</code>, all these
* methods simply return the receiver.
@ -1820,7 +1820,7 @@ int_to_i(VALUE num)
/*
* call-seq:
* int.integer? => true
* int.integer? -> true
*
* Always returns <code>true</code>.
*/
@ -1833,7 +1833,7 @@ int_int_p(VALUE num)
/*
* call-seq:
* int.odd? => true or false
* int.odd? -> true or false
*
* Returns <code>true</code> if <i>int</i> is an odd number.
*/
@ -1849,7 +1849,7 @@ int_odd_p(VALUE num)
/*
* call-seq:
* int.even? => true or false
* int.even? -> true or false
*
* Returns <code>true</code> if <i>int</i> is an even number.
*/
@ -1865,8 +1865,8 @@ int_even_p(VALUE num)
/*
* call-seq:
* fixnum.next => integer
* fixnum.succ => integer
* fixnum.next -> integer
* fixnum.succ -> integer
*
* Returns the <code>Integer</code> equal to <i>int</i> + 1.
*
@ -1883,8 +1883,8 @@ fix_succ(VALUE num)
/*
* call-seq:
* int.next => integer
* int.succ => integer
* int.next -> integer
* int.succ -> integer
*
* Returns the <code>Integer</code> equal to <i>int</i> + 1.
*
@ -1904,7 +1904,7 @@ int_succ(VALUE num)
/*
* call-seq:
* int.pred => integer
* int.pred -> integer
*
* Returns the <code>Integer</code> equal to <i>int</i> - 1.
*
@ -1924,7 +1924,7 @@ int_pred(VALUE num)
/*
* call-seq:
* int.chr([encoding]) => string
* int.chr([encoding]) -> string
*
* Returns a string containing the character represented by the
* receiver's value according to +encoding+.
@ -1981,7 +1981,7 @@ int_chr(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
* int.ord => self
* int.ord -> self
*
* Returns the int itself.
*
@ -2020,7 +2020,7 @@ int_ord(num)
/*
* call-seq:
* -fix => integer
* -fix -> integer
*
* Negates <code>fix</code> (which might return a Bignum).
*/
@ -2062,7 +2062,7 @@ rb_fix2str(VALUE x, int base)
/*
* call-seq:
* fix.to_s(base=10) => string
* fix.to_s(base=10) -> string
*
* Returns a string containing the representation of <i>fix</i> radix
* <i>base</i> (between 2 and 36).
@ -2093,7 +2093,7 @@ fix_to_s(int argc, VALUE *argv, VALUE x)
/*
* call-seq:
* fix + numeric => numeric_result
* fix + numeric -> numeric_result
*
* Performs addition: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@ -2126,7 +2126,7 @@ fix_plus(VALUE x, VALUE y)
/*
* call-seq:
* fix - numeric => numeric_result
* fix - numeric -> numeric_result
*
* Performs subtraction: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@ -2164,7 +2164,7 @@ fix_minus(VALUE x, VALUE y)
/*
* call-seq:
* fix * numeric => numeric_result
* fix * numeric -> numeric_result
*
* Performs multiplication: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@ -2246,7 +2246,7 @@ fixdivmod(long x, long y, long *divp, long *modp)
/*
* call-seq:
* fix.fdiv(numeric) => float
* fix.fdiv(numeric) -> float
*
* Returns the floating point result of dividing <i>fix</i> by
* <i>numeric</i>.
@ -2308,7 +2308,7 @@ fix_divide(VALUE x, VALUE y, ID op)
/*
* call-seq:
* fix / numeric => numeric_result
* fix / numeric -> numeric_result
*
* Performs division: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
@ -2323,7 +2323,7 @@ fix_div(VALUE x, VALUE y)
/*
* call-seq:
* fix.div(numeric) => integer
* fix.div(numeric) -> integer
*
* Performs integer division: returns integer value.
*/
@ -2336,8 +2336,8 @@ fix_idiv(VALUE x, VALUE y)
/*
* call-seq:
* fix % other => real
* fix.modulo(other) => real
* fix % other -> real
* fix.modulo(other) -> real
*
* Returns <code>fix</code> modulo <code>other</code>.
* See <code>numeric.divmod</code> for more information.
@ -2370,7 +2370,7 @@ fix_mod(VALUE x, VALUE y)
/*
* call-seq:
* fix.divmod(numeric) => array
* fix.divmod(numeric) -> array
*
* See <code>Numeric#divmod</code>.
*/
@ -2443,7 +2443,7 @@ int_pow(long x, unsigned long y)
/*
* call-seq:
* fix ** numeric => numeric_result
* fix ** numeric -> numeric_result
*
* Raises <code>fix</code> to the <code>numeric</code> power, which may
* be negative or fractional.
@ -2508,7 +2508,7 @@ fix_pow(VALUE x, VALUE y)
/*
* call-seq:
* fix == other => true or false
* fix == other -> true or false
*
* Return <code>true</code> if <code>fix</code> equals <code>other</code>
* numerically.
@ -2534,7 +2534,7 @@ fix_equal(VALUE x, VALUE y)
/*
* call-seq:
* fix <=> numeric => -1, 0, +1
* fix <=> numeric -> -1, 0, +1
*
* Comparison---Returns -1, 0, or +1 depending on whether <i>fix</i> is
* less than, equal to, or greater than <i>numeric</i>. This is the
@ -2561,7 +2561,7 @@ fix_cmp(VALUE x, VALUE y)
/*
* call-seq:
* fix > real => true or false
* fix > real -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* greater than that of <code>real</code>.
@ -2586,7 +2586,7 @@ fix_gt(VALUE x, VALUE y)
/*
* call-seq:
* fix >= real => true or false
* fix >= real -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* greater than or equal to that of <code>real</code>.
@ -2611,7 +2611,7 @@ fix_ge(VALUE x, VALUE y)
/*
* call-seq:
* fix < real => true or false
* fix < real -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* less than that of <code>real</code>.
@ -2636,7 +2636,7 @@ fix_lt(VALUE x, VALUE y)
/*
* call-seq:
* fix <= rael => true or false
* fix <= rael -> true or false
*
* Returns <code>true</code> if the value of <code>fix</code> is
* less than or equal to that of <code>real</code>.
@ -2661,7 +2661,7 @@ fix_le(VALUE x, VALUE y)
/*
* call-seq:
* ~fix => integer
* ~fix -> integer
*
* One's complement: returns a number where each bit is flipped.
*/
@ -2689,7 +2689,7 @@ bit_coerce(VALUE x)
/*
* call-seq:
* fix & integer => integer_result
* fix & integer -> integer_result
*
* Bitwise AND.
*/
@ -2708,7 +2708,7 @@ fix_and(VALUE x, VALUE y)
/*
* call-seq:
* fix | integer => integer_result
* fix | integer -> integer_result
*
* Bitwise OR.
*/
@ -2727,7 +2727,7 @@ fix_or(VALUE x, VALUE y)
/*
* call-seq:
* fix ^ integer => integer_result
* fix ^ integer -> integer_result
*
* Bitwise EXCLUSIVE OR.
*/
@ -2749,7 +2749,7 @@ static VALUE fix_rshift(long, unsigned long);
/*
* call-seq:
* fix << count => integer
* fix << count -> integer
*
* Shifts _fix_ left _count_ positions (right if _count_ is negative).
*/
@ -2781,7 +2781,7 @@ fix_lshift(long val, unsigned long width)
/*
* call-seq:
* fix >> count => integer
* fix >> count -> integer
*
* Shifts _fix_ right _count_ positions (left if _count_ is negative).
*/
@ -2814,7 +2814,7 @@ fix_rshift(long val, unsigned long i)
/*
* call-seq:
* fix[n] => 0, 1
* fix[n] -> 0, 1
*
* Bit Reference---Returns the <em>n</em>th bit in the binary
* representation of <i>fix</i>, where <i>fix</i>[0] is the least
@ -2857,7 +2857,7 @@ fix_aref(VALUE fix, VALUE idx)
/*
* call-seq:
* fix.to_f => float
* fix.to_f -> float
*
* Converts <i>fix</i> to a <code>Float</code>.
*
@ -2875,8 +2875,8 @@ fix_to_f(VALUE num)
/*
* call-seq:
* fix.abs => integer
* fix.magnitude => integer
* fix.abs -> integer
* fix.magnitude -> integer
*
* Returns the absolute value of <i>fix</i>.
*
@ -2899,7 +2899,7 @@ fix_abs(VALUE fix)
/*
* call-seq:
* fix.size => fixnum
* fix.size -> fixnum
*
* Returns the number of <em>bytes</em> in the machine representation
* of a <code>Fixnum</code>.
@ -2917,8 +2917,8 @@ fix_size(VALUE fix)
/*
* call-seq:
* int.upto(limit) {|i| block } => self
* int.upto(limit) => enumerator
* int.upto(limit) {|i| block } -> self
* int.upto(limit) -> enumerator
*
* Iterates <em>block</em>, passing in integer values from <i>int</i>
* up to and including <i>limit</i>.
@ -2956,8 +2956,8 @@ int_upto(VALUE from, VALUE to)
/*
* call-seq:
* int.downto(limit) {|i| block } => self
* int.downto(limit) => enumerator
* int.downto(limit) {|i| block } -> self
* int.downto(limit) -> enumerator
*
* Iterates <em>block</em>, passing decreasing values from <i>int</i>
* down to and including <i>limit</i>.
@ -2996,8 +2996,8 @@ int_downto(VALUE from, VALUE to)
/*
* call-seq:
* int.times {|i| block } => self
* int.times => enumerator
* int.times {|i| block } -> self
* int.times -> enumerator
*
* Iterates block <i>int</i> times, passing in values from zero to
* <i>int</i> - 1.
@ -3075,7 +3075,7 @@ int_round(int argc, VALUE* argv, VALUE num)
/*
* call-seq:
* fix.zero? => true or false
* fix.zero? -> true or false
*
* Returns <code>true</code> if <i>fix</i> is zero.
*
@ -3092,7 +3092,7 @@ fix_zero_p(VALUE num)
/*
* call-seq:
* fix.odd? => true or false
* fix.odd? -> true or false
*
* Returns <code>true</code> if <i>fix</i> is an odd number.
*/
@ -3108,7 +3108,7 @@ fix_odd_p(VALUE num)
/*
* call-seq:
* fix.even? => true or false
* fix.even? -> true or false
*
* Returns <code>true</code> if <i>fix</i> is an even number.
*/

View File

@ -502,6 +502,12 @@ f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
}
/*
* call-seq:
* Rational(x[, y]) -> numeric
*
* Returns x/y;
*/
static VALUE
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
{
@ -510,15 +516,14 @@ nurat_f_rational(int argc, VALUE *argv, VALUE klass)
/*
* call-seq:
* rat.numerator => integer
* rat.numerator -> integer
*
* Returns the numerator of _rat_ as an +Integer+ object.
* Returns the numerator.
*
* For example:
*
* Rational(7).numerator #=> 7
* Rational(7, 1).numerator #=> 7
* Rational(4.3, 40.3).numerator #=> 4841369599423283
* Rational(9, -4).numerator #=> -9
* Rational(-2, -10).numerator #=> 1
*/
@ -531,18 +536,17 @@ nurat_numerator(VALUE self)
/*
* call-seq:
* rat.denominator => integer
* rat.denominator -> integer
*
* Returns the denominator of _rat_ as an +Integer+ object. If _rat_ was
* created without an explicit denominator, +1+ is returned.
* Returns the denominator (always positive).
*
* For example:
*
* Rational(7).denominator #=> 1
* Rational(7, 1).denominator #=> 1
* Rational(4.3, 40.3).denominator #=> 45373766245757744
* Rational(9, -4).denominator #=> 4
* Rational(-2, -10).denominator #=> 5
* rat.numerator.gcd(rat.denominator) #=> 1
*/
static VALUE
nurat_denominator(VALUE self)
@ -638,13 +642,9 @@ f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
/*
* call-seq:
* rat + numeric => numeric_result
* rat + numeric -> numeric_result
*
* Performs addition. The class of the resulting object depends on
* the class of _numeric_ and on the magnitude of the
* result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
* Performs addition.
*
* For example:
*
@ -653,9 +653,7 @@ f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
* Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
* Rational(9, 8) + 4 #=> (41/8)
* Rational(20, 9) + 9.8 #=> 12.022222222222222
* Rational(8, 7) + 2**20 #=> (7340040/7)
*/
static VALUE
nurat_add(VALUE self, VALUE other)
{
@ -686,12 +684,9 @@ nurat_add(VALUE self, VALUE other)
/*
* call-seq:
* rat - numeric => numeric_result
* rat - numeric -> numeric_result
*
* Performs subtraction. The class of the resulting object depends on the
* class of _numeric_ and on the magnitude of the result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
* Performs subtraction.
*
* For example:
*
@ -700,7 +695,6 @@ nurat_add(VALUE self, VALUE other)
* Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
* Rational(9, 8) - 4 #=> (23/8)
* Rational(20, 9) - 9.8 #=> -7.577777777777778
* Rational(8, 7) - 2**20 #=> (-7340024/7)
*/
static VALUE
nurat_sub(VALUE self, VALUE other)
@ -771,12 +765,9 @@ f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
/*
* call-seq:
* rat * numeric => numeric_result
* rat * numeric -> numeric_result
*
* Performs multiplication. The class of the resulting object depends on
* the class of _numeric_ and on the magnitude of the result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
* Performs multiplication.
*
* For example:
*
@ -785,7 +776,6 @@ f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
* Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
* Rational(9, 8) * 4 #=> (9/2)
* Rational(20, 9) * 9.8 #=> 21.77777777777778
* Rational(8, 7) * 2**20 #=> (8388608/7)
*/
static VALUE
nurat_mul(VALUE self, VALUE other)
@ -817,14 +807,10 @@ nurat_mul(VALUE self, VALUE other)
/*
* call-seq:
* rat / numeric => numeric_result
* rat.quo(numeric) => numeric_result
* rat / numeric -> numeric_result
* rat.quo(numeric) -> numeric_result
*
* Performs division. The class of the resulting object depends on the class
* of _numeric_ and on the magnitude of the result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object. A
* +ZeroDivisionError+ is raised if _numeric_ is 0.
* Performs division.
*
* For example:
*
@ -833,9 +819,6 @@ nurat_mul(VALUE self, VALUE other)
* Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
* Rational(9, 8) / 4 #=> (9/32)
* Rational(20, 9) / 9.8 #=> 0.22675736961451246
* Rational(8, 7) / 2**20 #=> (1/917504)
* Rational(2, 13) / 0 #=> ZeroDivisionError: divided by zero
* Rational(2, 13) / 0.0 #=> Infinity
*/
static VALUE
nurat_div(VALUE self, VALUE other)
@ -871,20 +854,15 @@ nurat_div(VALUE self, VALUE other)
/*
* call-seq:
* rat.fdiv(numeric) => float
* rat.fdiv(numeric) -> float
*
* Performs float division: dividing _rat_ by _numeric_. The return value is a
* +Float+ object.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
* Performs division and returns the value as a float.
*
* For example:
*
* Rational(2, 3).fdiv(1) #=> 0.6666666666666666
* Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
* Rational(2).fdiv(3) #=> 0.6666666666666666
* Rational(-9, 6.6).fdiv(6.6) #=> -0.20661157024793392
* Rational(-20).fdiv(0.0) #=> -Infinity
*/
static VALUE
nurat_fdiv(VALUE self, VALUE other)
@ -894,23 +872,18 @@ nurat_fdiv(VALUE self, VALUE other)
/*
* call-seq:
* rat ** numeric => numeric_result
* rat ** numeric -> numeric_result
*
* Performs exponentiation, i.e. it raises _rat_ to the exponent _numeric_.
* The class of the resulting object depends on the class of _numeric_ and on
* the magnitude of the result. A +TypeError+ is raised unless _numeric_ is a
* +Numeric+ object.
* Performs exponentiation.
*
* For example:
*
* Rational(2, 3) ** Rational(2, 3) #=> 0.7631428283688879
* Rational(900) ** Rational(1) #=> (900/1)
* Rational(-2, 9) ** Rational(-9, 2) #=> (4.793639101185069e-13-869.8739233809262i)
* Rational(9, 8) ** 4 #=> (6561/4096)
* Rational(20, 9) ** 9.8 #=> 2503.325740344559
* Rational(3, 2) ** 2**3 #=> (6561/256)
* Rational(2, 13) ** 0 #=> (1/1)
* Rational(2, 13) ** 0.0 #=> 1.0
* Rational(2) ** Rational(3) #=> (8/1)
* Rational(10) ** -2 #=> (1/100)
* Rational(10) ** -2.0 #=> 0.01
* Rational(-4) ** Rational(1,2) #=> (1.2246063538223773e-16+2.0i)
* Rational(1, 2) ** 0 #=> (1/1)
* Rational(1, 2) ** 0.0 #=> 1.0
*/
static VALUE
nurat_expt(VALUE self, VALUE other)
@ -961,24 +934,17 @@ nurat_expt(VALUE self, VALUE other)
/*
* call-seq:
* rat <=> numeric => -1, 0, +1
* rat <=> numeric -> -1, 0 or +1
*
* Performs comparison. Returns -1, 0, or +1 depending on whether _rat_ is
* less than, equal to, or greater than _numeric_. This is the basis for the
* tests in +Comparable+.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
* Performs comparison and returns -1, 0, or +1.
*
* For example:
*
* Rational(2, 3) <=> Rational(2, 3) #=> 0
* Rational(5) <=> 5 #=> 0
* Rational(900) <=> Rational(1) #=> 1
* Rational(-2, 9) <=> Rational(-9, 2) #=> 1
* Rational(9, 8) <=> 4 #=> -1
* Rational(20, 9) <=> 9.8 #=> -1
* Rational(5, 3) <=> 'string' #=> TypeError: String can't
* # be coerced into Rational
* Rational(2,3) <=> Rational(1,3) #=> 1
* Rational(1,3) <=> 1 #=> -1
* Rational(1,3) <=> 0.3 #=> 1
*/
static VALUE
nurat_cmp(VALUE self, VALUE other)
@ -1019,19 +985,17 @@ nurat_cmp(VALUE self, VALUE other)
/*
* call-seq:
* rat == object => true or false
* rat == object -> true or false
*
* Tests for equality. Returns +true+ if _rat_ is equal to _object_; +false+
* otherwise.
* Returns true if rat equals object numerically.
*
* For example:
*
* Rational(2, 3) == Rational(2, 3) #=> true
* Rational(5) == 5 #=> true
* Rational(7, 1) == Rational(7) #=> true
* Rational(-2, 9) == Rational(-9, 2) #=> false
* Rational(9, 8) == 4 #=> false
* Rational(5, 3) == 'string' #=> false
* Rational(0) == 0.0 #=> true
* Rational('1/3') == 0.33 #=> false
* Rational('1/2') == '1/2' #=> false
*/
static VALUE
nurat_equal_p(VALUE self, VALUE other)
@ -1070,6 +1034,7 @@ nurat_equal_p(VALUE self, VALUE other)
}
}
/* :nodoc: */
static VALUE
nurat_coerce(VALUE self, VALUE other)
{
@ -1093,6 +1058,13 @@ nurat_coerce(VALUE self, VALUE other)
}
#if 0
/* :nodoc: */
static VALUE
nurat_idiv(VALUE self, VALUE other)
{
return f_idiv(self, other);
}
/* :nodoc: */
static VALUE
nurat_quot(VALUE self, VALUE other)
@ -1100,7 +1072,6 @@ nurat_quot(VALUE self, VALUE other)
return f_truncate(f_div(self, other));
}
/* :nodoc: */
static VALUE
nurat_quotrem(VALUE self, VALUE other)
@ -1136,12 +1107,12 @@ nurat_ceil(VALUE self)
/*
* call-seq:
* rat.to_i => integer
* rat.to_i -> integer
*
* Returns _rat_ truncated to an integer as an +Integer+ object.
* Returns the truncated value as an integer.
*
* Equivalent to
* <i>rat</i>.<code>truncate(</code>.
* rat.truncate.
*
* For example:
*
@ -1213,32 +1184,23 @@ nurat_round_common(int argc, VALUE *argv, VALUE self,
/*
* call-seq:
* rat.floor => integer
* rat.floor(precision=0) => rational
* rat.floor -> integer
* rat.floor(precision=0) -> rational
*
* Returns the largest integer less than or equal to _rat_ as an +Integer+
* object. Contrast with +Rational#ceil+.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded downwards to that number of
* decimal places. If _precision_ is negative, the result is rounded downwards
* to the nearest 10**_precision_. By default _precision_ is equal to 0,
* causing the result to be a whole number.
* Returns the truncated value (toward negative infinity).
*
* For example:
*
* Rational(2, 3).floor #=> 0
* Rational(3).floor #=> 3
* Rational(300.6).floor #=> 300
* Rational(98,71).floor #=> 1
* Rational(-30,2).floor #=> -15
* Rational(-30,-11).floor #=> 2
* Rational(2, 3).floor #=> 0
* Rational(-3, 2).floor #=> -1
*
* Rational(-1.125).floor(2).to_f #=> -1.13
* Rational(-1.125).floor(1).to_f #=> -1.2
* Rational(-1.125).floor.to_f #=> -2.0
* Rational(-1.125).floor(-1).to_f #=> -10.0
* Rational(-1.125).floor(-2).to_f #=> -100.0
* decimal - 1 2 3 . 4 5 6
* ^ ^ ^ ^ ^ ^
* precision -3 -2 -1 0 +1 +2
*
* '%f' % Rational('-123.456').floor(+1) #=> "-123.500000"
* '%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
*/
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
@ -1248,32 +1210,23 @@ nurat_floor_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
* rat.ceil => integer
* rat.ceil(precision=0) => rational
* rat.ceil -> integer
* rat.ceil(precision=0) -> rational
*
* Returns the smallest integer greater than or equal to _rat_ as an +Integer+
* object. Contrast with +Rational#floor+.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded upwards to that number of
* decimal places. If _precision_ is negative, the result is rounded upwards
* to the nearest 10**_precision_. By default _precision_ is equal to 0,
* causing the result to be a whole number.
* Returns the truncated value (toward positive infinity).
*
* For example:
*
* Rational(2, 3).ceil #=> 1
* Rational(3).ceil #=> 3
* Rational(300.6).ceil #=> 301
* Rational(98, 71).ceil #=> 2
* Rational(-30, 2).ceil #=> -15
* Rational(-30,-11).ceil #=> 3
* Rational(2, 3).ceil #=> 1
* Rational(-3, 2).ceil #=> -1
*
* Rational(-1.125).ceil(2).to_f #=> -1.12
* Rational(-1.125).ceil(1).to_f #=> -1.1
* Rational(-1.125).ceil.to_f #=> -1.0
* Rational(-1.125).ceil(-1).to_f #=> 0.0
* Rational(-1.125).ceil(-2).to_f #=> 0.0
* decimal - 1 2 3 . 4 5 6
* ^ ^ ^ ^ ^ ^
* precision -3 -2 -1 0 +1 +2
*
* '%f' % Rational('-123.456').ceil(+1) #=> "-123.400000"
* '%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
*/
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
@ -1283,31 +1236,23 @@ nurat_ceil_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
* rat.truncate => integer
* rat.truncate(precision=0) => rational
* rat.truncate -> integer
* rat.truncate(precision=0) -> rational
*
* Truncates self to an integer and returns the result as an +Integer+ object.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded downwards to that number of
* decimal places. If _precision_ is negative, the result is rounded downwards
* to the nearest 10**_precision_. By default _precision_ is equal to 0,
* causing the result to be a whole number.
* Returns the truncated value (toward zero).
*
* For example:
*
* Rational(2, 3).truncate #=> 0
* Rational(3).truncate #=> 3
* Rational(300.6).truncate #=> 300
* Rational(98,71).truncate #=> 1
* Rational(-30,2).truncate #=> -15
* Rational(-30, -11).truncate #=> 2
* Rational(2, 3).truncate #=> 0
* Rational(-3, 2).truncate #=> -1
*
* Rational(-123.456).truncate(2).to_f #=> -123.45
* Rational(-123.456).truncate(1).to_f #=> -123.4
* Rational(-123.456).truncate.to_f #=> -123.0
* Rational(-123.456).truncate(-1).to_f #=> -120.0
* Rational(-123.456).truncate(-2).to_f #=> -100.0
* decimal - 1 2 3 . 4 5 6
* ^ ^ ^ ^ ^ ^
* precision -3 -2 -1 0 +1 +2
*
* '%f' % Rational('-123.456').truncate(+1) #=> "-123.400000"
* '%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
*/
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
@ -1317,33 +1262,24 @@ nurat_truncate_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
* rat.round => integer
* rat.round(precision=0) => rational
* rat.round -> integer
* rat.round(precision=0) -> rational
*
* Rounds _rat_ to an integer, and returns the result as an +Integer+ object.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded to that number of decimal
* places. If _precision_ is negative, the result is rounded to the nearest
* 10**_precision_. By default _precision_ is equal to 0, causing the result
* to be a whole number.
*
* A +TypeError+ is raised if _integer_ is given and not an +Integer+ object.
* Returns the truncated value (toward the nearest integer;
* 0.5 => 1; -0.5 => -1).
*
* For example:
*
* Rational(9, 3.3).round #=> 3
* Rational(9, 3.3).round(1) #=> (27/10)
* Rational(9,3.3).round(2) #=> (273/100)
* Rational(8, 7).round(5) #=> (57143/50000)
* Rational(-20, -3).round #=> 7
* Rational(3).round #=> 3
* Rational(2, 3).round #=> 1
* Rational(-3, 2).round #=> -2
*
* Rational(-123.456).round(2).to_f #=> -123.46
* Rational(-123.456).round(1).to_f #=> -123.5
* Rational(-123.456).round.to_f #=> -123.0
* Rational(-123.456).round(-1).to_f #=> -120.0
* Rational(-123.456).round(-2).to_f #=> -100.0
* decimal - 1 2 3 . 4 5 6
* ^ ^ ^ ^ ^ ^
* precision -3 -2 -1 0 +1 +2
*
* '%f' % Rational('-123.456').round(+1) #=> "-123.500000"
* '%f' % Rational('-123.456').round(-1) #=> "-120.000000"
*/
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
@ -1353,10 +1289,9 @@ nurat_round_n(int argc, VALUE *argv, VALUE self)
/*
* call-seq:
* rat.to_f => float
* rat.to_f -> float
*
* Converts _rat_ to a floating point number and returns the result as a
* +Float+ object.
* Return the value as a float.
*
* For example:
*
@ -1374,15 +1309,14 @@ nurat_to_f(VALUE self)
/*
* call-seq:
* rat.to_r => self
* rat.to_r -> self
*
* Returns self, i.e. a +Rational+ object representing _rat_.
* Returns self.
*
* For example:
*
* Rational(2).to_r #=> (2/1)
* Rational(-8, 6).to_r #=> (-4/3)
* Rational(39.2).to_r #=> (2758454771764429/70368744177664)
*/
static VALUE
nurat_to_r(VALUE self)
@ -1390,6 +1324,7 @@ nurat_to_r(VALUE self)
return self;
}
/* :nodoc: */
static VALUE
nurat_hash(VALUE self)
{
@ -1421,16 +1356,15 @@ nurat_format(VALUE self, VALUE (*func)(VALUE))
/*
* call-seq:
* rat.to_s => string
* rat.to_s -> string
*
* Returns a +String+ representation of _rat_ in the form
* "_numerator_/_denominator_".
* Returns the value as a string.
*
* For example:
*
* Rational(2).to_s #=> "2/1"
* Rational(-8, 6).to_s #=> "-4/3"
* Rational(0.5).to_s #=> "1/2"
* Rational('0.5').to_s #=> "1/2"
*/
static VALUE
nurat_to_s(VALUE self)
@ -1440,16 +1374,15 @@ nurat_to_s(VALUE self)
/*
* call-seq:
* rat.inspect => string
* rat.inspect -> string
*
* Returns a +String+ containing a human-readable representation of _rat_ in
* the form "(_numerator_/_denominator_)".
* Returns the value as a string for inspection.
*
* For example:
*
* Rational(2).to_s #=> "(2/1)"
* Rational(-8, 6).to_s #=> "(-4/3)"
* Rational(0.5).to_s #=> "(1/2)"
* Rational(2).inspect #=> "(2/1)"
* Rational(-8, 6).inspect #=> "(-4/3)"
* Rational('0.5').inspect #=> "(1/2)"
*/
static VALUE
nurat_inspect(VALUE self)
@ -1494,20 +1427,16 @@ nurat_marshal_load(VALUE self, VALUE a)
/*
* call-seq:
* int.gcd(_int2_) => integer
* int.gcd(int2) -> integer
*
* Returns the greatest common divisor of _int_ and _int2_: the largest
* positive integer that divides the two without a remainder. The result is an
* +Integer+ object.
*
* An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
* Returns the greatest common divisor (always positive). 0.gcd(x)
* and x.gcd(0) return abs(x).
*
* For example:
*
* 2.gcd(2) #=> 2
* -2.gcd(2) #=> 2
* 8.gcd(6) #=> 2
* 25.gcd(5) #=> 5
* 3.gcd(-7) #=> 1
* ((1<<31)-1).gcd((1<<61)-1) #=> 1
*/
VALUE
rb_gcd(VALUE self, VALUE other)
@ -1518,20 +1447,16 @@ rb_gcd(VALUE self, VALUE other)
/*
* call-seq:
* int.lcm(_int2_) => integer
* int.lcm(int2) -> integer
*
* Returns the least common multiple (or "lowest common multiple") of _int_
* and _int2_: the smallest positive integer that is a multiple of both
* integers. The result is an +Integer+ object.
*
* An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
* Returns the least common multiple (always positive). 0.lcm(x) and
* x.lcm(0) return zero.
*
* For example:
*
* 2.lcm(2) #=> 2
* -2.gcd(2) #=> 2
* 8.gcd(6) #=> 24
* 8.lcm(9) #=> 72
* 3.lcm(-7) #=> 21
* ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
*/
VALUE
rb_lcm(VALUE self, VALUE other)
@ -1542,22 +1467,15 @@ rb_lcm(VALUE self, VALUE other)
/*
* call-seq:
* int.gcdlcm(_int2_) => array
* int.gcdlcm(int2) -> array
*
* Returns a two-element +Array+ containing _int_.gcd(_int2_) and
* _int_.lcm(_int2_) respectively. That is, the greatest common divisor of
* _int_ and _int2_, then the least common multiple of _int_ and _int2_. Both
* elements are +Integer+ objects.
*
* An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
* Returns an array; [int.gcd(int2), int.lcm(int2)].
*
* For example:
*
* 2.gcdlcm(2) #=> [2, 2]
* -2.gcdlcm(2) #=> [2, 2]
* 8.gcdlcm(6) #=> [2, 24]
* 8.gcdlcm(9) #=> [1, 72]
* 9.gcdlcm(9**9) #=> [9, 387420489]
* 3.gcdlcm(-7) #=> [1, 21]
* ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
*/
VALUE
rb_gcdlcm(VALUE self, VALUE other)
@ -1600,9 +1518,9 @@ rb_Rational(VALUE x, VALUE y)
/*
* call-seq:
* num.numerator => integer
* num.numerator -> integer
*
* Returns the numerator of _num_ as an +Integer+ object.
* Returns the numerator.
*/
static VALUE
numeric_numerator(VALUE self)
@ -1612,9 +1530,9 @@ numeric_numerator(VALUE self)
/*
* call-seq:
* num.denominator => integer
* num.denominator -> integer
*
* Returns the denominator of _num_ as an +Integer+ object.
* Returns the denominator (always positive).
*/
static VALUE
numeric_denominator(VALUE self)
@ -1624,7 +1542,7 @@ numeric_denominator(VALUE self)
/*
* call-seq:
* int.numerator => self
* int.numerator -> self
*
* Returns self.
*/
@ -1636,7 +1554,7 @@ integer_numerator(VALUE self)
/*
* call-seq:
* int.numerator => 1
* int.numerator -> 1
*
* Returns 1.
*/
@ -1648,14 +1566,14 @@ integer_denominator(VALUE self)
/*
* call-seq:
* flo.numerator => integer
* flo.numerator -> integer
*
* Returns the numerator of _flo_ as an +Integer+ object.
* Returns the numerator. The result is machine dependent.
*
* For example:
*
* n = 0.3.numerator #=> 5404319552844595 # machine dependent
* d = 0.3.denominator #=> 18014398509481984 # machine dependent
* n = 0.3.numerator #=> 5404319552844595
* d = 0.3.denominator #=> 18014398509481984
* n.fdiv(d) #=> 0.3
*/
static VALUE
@ -1669,11 +1587,12 @@ float_numerator(VALUE self)
/*
* call-seq:
* flo.denominator => integer
* flo.denominator -> integer
*
* Returns the denominator of _flo_ as an +Integer+ object.
* Returns the denominator (always positive). The result is machine
* dependent.
*
* See Float#numerator.
* See numerator.
*/
static VALUE
float_denominator(VALUE self)
@ -1686,9 +1605,9 @@ float_denominator(VALUE self)
/*
* call-seq:
* nil.to_r => (0/1)
* nil.to_r -> (0/1)
*
* Returns a +Rational+ object representing _nil_ as a rational number.
* Returns zero as a rational.
*/
static VALUE
nilclass_to_r(VALUE self)
@ -1698,14 +1617,14 @@ nilclass_to_r(VALUE self)
/*
* call-seq:
* int.to_r => rational
* int.to_r -> rational
*
* Returns a +Rational+ object representing _int_ as a rational number.
* Returns the value as a rational.
*
* For example:
*
* 1.to_r #=> (1/1)
* 12.to_r #=> (12/1)
* (1<<64).to_r #=> (18446744073709551616/1)
*/
static VALUE
integer_to_r(VALUE self)
@ -1739,10 +1658,12 @@ float_decode(VALUE self)
/*
* call-seq:
* flt.to_r => rational
* flt.to_r -> rational
*
* Returns _flt_ as an +Rational+ object. Raises a +FloatDomainError+ if _flt_
* is +Infinity+ or +NaN+.
* Returns the value as a rational.
*
* NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is
* equivalent to '3/10'.to_r, but the former isn't so.
*
* For example:
*
@ -1750,7 +1671,6 @@ float_decode(VALUE self)
* 2.5.to_r #=> (5/2)
* -0.75.to_r #=> (-3/4)
* 0.0.to_r #=> (0/1)
* (1/0.0).to_r #=> FloatDomainError: Infinity
*/
static VALUE
float_to_r(VALUE self)
@ -1898,21 +1818,26 @@ string_to_r_strict(VALUE self)
/*
* call-seq:
* str.to_r => rational
* str.to_r -> rational
*
* Returns a +Rational+ object representing _string_ as a rational number.
* Leading and trailing whitespace is ignored. Underscores may be used to
* separate numbers. If _string_ is not recognised as a rational, (0/1) is
* returned.
* Returns a rational which denotes the string form. The parser
* ignores leading whitespaces and trailing garbage. Any digit
* sequences can be separeted by an underscore. Returns zero for null
* or garbage string.
*
* NOTE: '0.3'.to_r isn't the same as 0.3.to_r. The former is
* equivalent to '3/10'.to_r, but the latter isn't so.
*
* For example:
*
* "2".to_r #=> (2/1)
* "300/2".to_r #=> (150/1)
* "-9.2/3".to_r #=> (-46/15)
* " 2/9 ".to_r #=> (2/9)
* "2_9".to_r #=> (29/1)
* "?".to_r #=> (0/1)
* ' 2 '.to_r #=> (2/1)
* '300/2'.to_r #=> (150/1)
* '-9.2'.to_r #=> (-46/5)
* '-9.2e2'.to_r #=> (-920/1)
* '1_234_567'.to_r #=> (1234567/1)
* '21 june 09'.to_r #=> (21/1)
* '21/06/09'.to_r #=> (7/2)
* 'bwv 1079'.to_r #=> (0/1)
*/
static VALUE
string_to_r(VALUE self)
@ -2011,68 +1936,43 @@ nurat_s_convert(int argc, VALUE *argv, VALUE klass)
}
/*
* A +Rational+ object represents a rational number, which is any number that
* can be expressed as the quotient a/b of two integers (where the denominator
* is nonzero). Given that b may be equal to 1, every integer is rational.
* A rational number can be represented as a paired integer number;
* a/b (b>0). Where a is numerator and b is denominator. Integer a
* equals rational a/1 mathematically.
*
* A +Rational+ object can be created with the +Rational()+ constructor:
* In ruby, you can create rational object with Rational or to_r
* method. The return values will be irreducible.
*
* Rational(1) #=> (1/1)
* Rational(2, 3) #=> (2/3)
* Rational(0.5) #=> (1/2)
* Rational("2/7") #=> (2/7)
* Rational("0.25") #=> (1/4)
* Rational("10e3") #=> (10000/1)
* Rational(4, -6) #=> (-2/3)
* 3.to_r #=> (3/1)
*
* The first argument is the numerator, the second the denominator. If the
* denominator is not supplied it defaults to 1. The arguments can be
* +Numeric+ or +String+ objects.
* You can also create ratioanl object from floating-point numbers or
* strings.
*
* Rational(12) == Rational(12, 1) #=> true
* Rational(0.3) #=> (5404319552844595/18014398509481984)
* Rational('0.3') #=> (3/10)
* Rational('2/3') #=> (2/3)
*
* A +ZeroDivisionError+ will be raised if 0 is specified as the denominator:
* 0.3.to_r #=> (5404319552844595/18014398509481984)
* '0.3'.to_r #=> (3/10)
* '2/3'.to_r #=> (2/3)
*
* Rational(3, 0) #=> ZeroDivisionError: divided by zero
* A rational object is an exact number, which helps you to write
* program without any rounding errors.
*
* The numerator and denominator of a +Rational+ object can be retrieved with
* the +Rational#numerator+ and +Rational#denominator+ accessors,
* respectively.
* 10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999
* 10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
*
* rational = Rational(4, 7) #=> (4/7)
* rational.numerator #=> 4
* rational.denominator #=> 7
* However, when an expression has inexact factor (numerical value or
* operation), will produce an inexact result.
*
* A +Rational+ is automatically reduced into its simplest form:
* Rational(10) / 3 #=> (10/3)
* Rational(10) / 3.0 #=> 3.3333333333333335
*
* Rational(10, 2) #=> (5/1)
*
* +Numeric+ and +String+ objects can be converted into a +Rational+ with
* their +#to_r+ methods.
*
* 30.to_r #=> (30/1)
* 3.33.to_r #=> (1874623344892969/562949953421312)
* '33/3'.to_r #=> (11/1)
*
* The reverse operations work as you would expect:
*
* Rational(30, 1).to_i #=> 30
* Rational(1874623344892969, 562949953421312).to_f #=> 3.33
* Rational(11, 1).to_s #=> "11/1"
*
* +Rational+ objects can be compared with other +Numeric+ objects using the
* normal semantics:
*
* Rational(20, 10) == Rational(2, 1) #=> true
* Rational(10) > Rational(1) #=> true
* Rational(9, 2) <=> Rational(8, 3) #=> 1
*
* Similarly, standard mathematical operations support +Rational+ objects, too:
*
* Rational(9, 2) * 2 #=> (9/1)
* Rational(12, 29) / Rational(2,3) #=> (18/29)
* Rational(7,5) + Rational(60) #=> (307/5)
* Rational(22, 5) - Rational(5, 22) #=> (459/110)
* Rational(2,3) ** 3 #=> (8/27)
* Rational(-8) ** Rational(1, 3)
* #=> (1.0000000000000002+1.7320508075688772i)
*/
void
Init_Rational(void)