Enhanced documentation for Array#repeated_permutation (#3390)

* Enhanced documentation for Array#repeated_permutation

* Enhanced documentation for Array#repeated_permutation
This commit is contained in:
Burdette Lamar 2020-08-05 09:42:58 -05:00 committed by GitHub
parent 8f71bb0e4f
commit 2498334614
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
Notes: git 2020-08-05 23:43:25 +09:00
Merged-By: BurdetteLamar <BurdetteLamar@Yahoo.com>

77
array.c
View File

@ -7810,25 +7810,74 @@ rb_ary_repeated_permutation_size(VALUE ary, VALUE args, VALUE eobj)
/*
* call-seq:
* ary.repeated_permutation(n) {|p| block} -> ary
* ary.repeated_permutation(n) -> Enumerator
* array.repeated_permutation(n) {|permutation| ... } -> self
* array.repeated_permutation(n) -> new_enumerator
*
* When invoked with a block, yield all repeated permutations of length +n+ of
* the elements of the array, then return the array itself.
* Calls the block with each repeated permutation of length +n+ of the elements of +self+;
* each permutation is an \Array;
* returns +self+. The order of the permutations is indeterminate.
*
* The implementation makes no guarantees about the order in which the repeated
* permutations are yielded.
* Argument +n+ must be an
* {Integer-convertible object}[doc/implicit_conversion_rdoc.html#label-Integer-Convertible+Objects].
*
* If no block is given, an Enumerator is returned instead.
* ---
*
* Examples:
* When a block and a positive argument +n+ are given, calls the block with each
* +n+-tuple repeated permutation of the elements of +self+.
* The number of permutations is <tt>self.size**n</tt>.
*
* a = [1, 2]
* a.repeated_permutation(1).to_a #=> [[1], [2]]
* a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]]
* a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
* # [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
* a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
* +n+ = 1:
* a = [0, 1, 2]
* a1 = a.repeated_permutation(1) {|permutation| p permutation }
* a1.equal?(a) # => true # Returned self
* Output:
* [0]
* [1]
* [2]
*
* +n+ = 2:
* a.repeated_permutation(2) {|permutation| p permutation }
* Output:
* [0, 0]
* [0, 1]
* [0, 2]
* [1, 0]
* [1, 1]
* [1, 2]
* [2, 0]
* [2, 1]
* [2, 2]
*
* If +n+ is zero, calls the block once with an empty \Array:
* a.repeated_permutation(0) {|permutation| p permutation }
* Output:
* []
* If +n+ is negative, does not call the block:
* a.repeated_permutation(-1) {|permutation| fail 'Cannot happen' }
*
* ---
*
* Returns a new \Enumerator if no block given:
* a = [0, 1, 2]
* a.repeated_permutations(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>
*
* Using Enumerators, it's convenient to show the permutations and counts
* for some values of +n+:
* e = a.repeated_permutation(0)
* e.size # => 1
* e.to_a # => [[]]
* e = a.repeated_permutation(1)
* e.size # => 3
* e.to_a # => [[0], [1], [2]]
* e = a.repeated_permutation(2)
* e.size # => 9
* e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]
*
* ---
*
* Raises an exception if +n+ is not an Integer-convertible object:
* # Raises TypeError (no implicit conversion of Symbol into Integer):
* a.repeated_permutation(:foo) { }
*/
static VALUE