qtbase/src/corelib/tools/qcryptographichash.cpp
Marc Mutz d53f8d6bbb QCryptographicHash: move addData(QIODevice*) to Private
To be reused in QMessageAuthenticationCode.

Pick-to: 6.5
Change-Id: Ie4f003ad38ce9072cf6ee52ef2d7a63438e4d7ae
Reviewed-by: Thiago Macieira <thiago.macieira@intel.com>
2023-02-24 07:26:19 +01:00

1225 lines
37 KiB
C++

// Copyright (C) 2023 The Qt Company Ltd.
// Copyright (C) 2013 Ruslan Nigmatullin <euroelessar@yandex.ru>
// Copyright (C) 2013 Richard J. Moore <rich@kde.org>.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only
#include <qcryptographichash.h>
#include <qmessageauthenticationcode.h>
#include <qiodevice.h>
#include <qmutex.h>
#include <qvarlengtharray.h>
#include <private/qlocking_p.h>
#include <array>
#include "../../3rdparty/sha1/sha1.cpp"
#if defined(QT_BOOTSTRAPPED) && !defined(QT_CRYPTOGRAPHICHASH_ONLY_SHA1)
# error "Are you sure you need the other hashing algorithms besides SHA-1?"
#endif
// Header from rfc6234
#include "../../3rdparty/rfc6234/sha.h"
#ifndef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
#if !QT_CONFIG(opensslv30) || !QT_CONFIG(openssl_linked)
// qdoc and qmake only need SHA-1
#include "../../3rdparty/md5/md5.h"
#include "../../3rdparty/md5/md5.cpp"
#include "../../3rdparty/md4/md4.h"
#include "../../3rdparty/md4/md4.cpp"
typedef unsigned char BitSequence;
typedef unsigned long long DataLength;
typedef enum { SUCCESS = 0, FAIL = 1, BAD_HASHLEN = 2 } HashReturn;
#ifdef Q_OS_RTEMS
# undef ALIGN
#endif
#include "../../3rdparty/sha3/KeccakSponge.c"
typedef spongeState hashState;
#include "../../3rdparty/sha3/KeccakNISTInterface.c"
/*
This lets us choose between SHA3 implementations at build time.
*/
typedef spongeState SHA3Context;
typedef HashReturn (SHA3Init)(hashState *state, int hashbitlen);
typedef HashReturn (SHA3Update)(hashState *state, const BitSequence *data, DataLength databitlen);
typedef HashReturn (SHA3Final)(hashState *state, BitSequence *hashval);
#if Q_PROCESSOR_WORDSIZE == 8 // 64 bit version
#include "../../3rdparty/sha3/KeccakF-1600-opt64.c"
Q_CONSTINIT static SHA3Init * const sha3Init = Init;
Q_CONSTINIT static SHA3Update * const sha3Update = Update;
Q_CONSTINIT static SHA3Final * const sha3Final = Final;
#else // 32 bit optimised fallback
#include "../../3rdparty/sha3/KeccakF-1600-opt32.c"
Q_CONSTINIT static SHA3Init * const sha3Init = Init;
Q_CONSTINIT static SHA3Update * const sha3Update = Update;
Q_CONSTINIT static SHA3Final * const sha3Final = Final;
#endif
/*
These 2 functions replace macros of the same name in sha224-256.c and
sha384-512.c. Originally, these macros relied on a global static 'addTemp'
variable. We do not want this for 2 reasons:
1. since we are including the sources directly, the declaration of the 2 conflict
2. static variables are not thread-safe, we do not want multiple threads
computing a hash to corrupt one another
*/
static int SHA224_256AddLength(SHA256Context *context, unsigned int length);
static int SHA384_512AddLength(SHA512Context *context, unsigned int length);
// Sources from rfc6234, with 4 modifications:
// sha224-256.c - commented out 'static uint32_t addTemp;' on line 68
// sha224-256.c - appended 'M' to the SHA224_256AddLength macro on line 70
#include "../../3rdparty/rfc6234/sha224-256.c"
// sha384-512.c - commented out 'static uint64_t addTemp;' on line 302
// sha384-512.c - appended 'M' to the SHA224_256AddLength macro on line 304
#include "../../3rdparty/rfc6234/sha384-512.c"
static inline int SHA224_256AddLength(SHA256Context *context, unsigned int length)
{
uint32_t addTemp;
return SHA224_256AddLengthM(context, length);
}
static inline int SHA384_512AddLength(SHA512Context *context, unsigned int length)
{
uint64_t addTemp;
return SHA384_512AddLengthM(context, length);
}
#endif // !QT_CONFIG(opensslv30)
#include "qtcore-config_p.h"
#if QT_CONFIG(system_libb2)
#include <blake2.h>
#else
#include "../../3rdparty/blake2/src/blake2b-ref.c"
#include "../../3rdparty/blake2/src/blake2s-ref.c"
#endif
#endif // QT_CRYPTOGRAPHICHASH_ONLY_SHA1
#if !defined(QT_BOOTSTRAPPED) && QT_CONFIG(opensslv30) && QT_CONFIG(openssl_linked)
#define USING_OPENSSL30
#include <openssl/evp.h>
#include <openssl/provider.h>
#include <openssl/sha.h>
#endif
QT_BEGIN_NAMESPACE
template <size_t N>
class QSmallByteArray
{
std::array<quint8, N> m_data;
static_assert(N <= std::numeric_limits<std::uint8_t>::max());
quint8 m_size = 0;
public:
// all SMFs are ok!
quint8 *data() noexcept { return m_data.data(); }
qsizetype size() const noexcept { return qsizetype{m_size}; }
bool isEmpty() const noexcept { return size() == 0; }
void clear() noexcept { m_size = 0; }
void resizeForOverwrite(qsizetype s)
{
Q_ASSERT(s >= 0);
Q_ASSERT(size_t(s) <= N);
m_size = std::uint8_t(s);
}
QByteArrayView toByteArrayView() const noexcept
{ return QByteArrayView{m_data.data(), size()}; }
};
static constexpr qsizetype MaxHashLength = 64;
static constexpr int hashLengthInternal(QCryptographicHash::Algorithm method) noexcept
{
switch (method) {
#define CASE(Enum, Size) \
case QCryptographicHash:: Enum : \
/* if this triggers, then increase MaxHashLength accordingly */ \
static_assert(MaxHashLength >= qsizetype(Size) ); \
return Size \
/*end*/
CASE(Sha1, 20);
#ifndef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
CASE(Md4, 16);
CASE(Md5, 16);
#ifdef USING_OPENSSL30
CASE(Sha224, SHA224_DIGEST_LENGTH);
CASE(Sha256, SHA256_DIGEST_LENGTH);
CASE(Sha384, SHA384_DIGEST_LENGTH);
CASE(Sha512, SHA512_DIGEST_LENGTH);
#else
CASE(Sha224, SHA224HashSize);
CASE(Sha256, SHA256HashSize);
CASE(Sha384, SHA384HashSize);
CASE(Sha512, SHA512HashSize);
#endif
CASE(Blake2s_128, 128 / 8);
case QCryptographicHash::Blake2b_160:
case QCryptographicHash::Blake2s_160:
static_assert(160 / 8 <= MaxHashLength);
return 160 / 8;
case QCryptographicHash::RealSha3_224:
case QCryptographicHash::Keccak_224:
case QCryptographicHash::Blake2s_224:
static_assert(224 / 8 <= MaxHashLength);
return 224 / 8;
case QCryptographicHash::RealSha3_256:
case QCryptographicHash::Keccak_256:
case QCryptographicHash::Blake2b_256:
case QCryptographicHash::Blake2s_256:
static_assert(256 / 8 <= MaxHashLength);
return 256 / 8;
case QCryptographicHash::RealSha3_384:
case QCryptographicHash::Keccak_384:
case QCryptographicHash::Blake2b_384:
static_assert(384 / 8 <= MaxHashLength);
return 384 / 8;
case QCryptographicHash::RealSha3_512:
case QCryptographicHash::Keccak_512:
case QCryptographicHash::Blake2b_512:
static_assert(512 / 8 <= MaxHashLength);
return 512 / 8;
#endif
#undef CASE
}
return 0;
}
#ifdef USING_OPENSSL30
static constexpr const char * methodToName(QCryptographicHash::Algorithm method) noexcept
{
switch (method) {
#define CASE(Enum, Name) \
case QCryptographicHash:: Enum : \
return Name \
/*end*/
CASE(Sha1, "SHA1");
CASE(Md4, "MD4");
CASE(Md5, "MD5");
CASE(Sha224, "SHA224");
CASE(Sha256, "SHA256");
CASE(Sha384, "SHA384");
CASE(Sha512, "SHA512");
CASE(RealSha3_224, "SHA3-224");
CASE(RealSha3_256, "SHA3-256");
CASE(RealSha3_384, "SHA3-384");
CASE(RealSha3_512, "SHA3-512");
CASE(Keccak_224, "SHA3-224");
CASE(Keccak_256, "SHA3-256");
CASE(Keccak_384, "SHA3-384");
CASE(Keccak_512, "SHA3-512");
CASE(Blake2b_512, "BLAKE2B512");
CASE(Blake2s_256, "BLAKE2S256");
#undef CASE
default: return nullptr;
}
}
#endif
class QCryptographicHashPrivate
{
public:
explicit QCryptographicHashPrivate(QCryptographicHash::Algorithm method) noexcept
: method(method)
{
reset();
}
void reset() noexcept;
void addData(QByteArrayView bytes) noexcept;
bool addData(QIODevice *dev);
void finalize() noexcept;
// when not called from the static hash() function, this function needs to be
// called with finalizeMutex held (finalize() will do that):
void finalizeUnchecked() noexcept;
// END functions that need to be called with finalizeMutex held
QByteArrayView resultView() const noexcept { return result.toByteArrayView(); }
static bool supportsAlgorithm(QCryptographicHash::Algorithm method);
#ifdef USING_OPENSSL30
struct EVP_MD_CTX_deleter {
void operator()(EVP_MD_CTX *ctx) const noexcept {
EVP_MD_CTX_free(ctx);
}
};
struct EVP_MD_deleter {
void operator()(EVP_MD *md) const noexcept {
EVP_MD_free(md);
}
};
using EVP_MD_CTX_ptr = std::unique_ptr<EVP_MD_CTX, EVP_MD_CTX_deleter>;
using EVP_MD_ptr = std::unique_ptr<EVP_MD, EVP_MD_deleter>;
EVP_MD_ptr algorithm;
EVP_MD_CTX_ptr context;
bool initializationFailed = false;
#endif
union {
Sha1State sha1Context;
#ifndef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
#ifndef USING_OPENSSL30
MD5Context md5Context;
md4_context md4Context;
SHA224Context sha224Context;
SHA256Context sha256Context;
SHA384Context sha384Context;
SHA512Context sha512Context;
SHA3Context sha3Context;
#endif
blake2b_state blake2bContext;
blake2s_state blake2sContext;
#endif
};
#ifndef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
#ifndef USING_OPENSSL30
enum class Sha3Variant
{
Sha3,
Keccak
};
void sha3Finish(int bitCount, Sha3Variant sha3Variant);
#endif
#endif
// protects result in finalize()
QBasicMutex finalizeMutex;
QSmallByteArray<MaxHashLength> result;
const QCryptographicHash::Algorithm method;
};
#ifndef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
#ifndef USING_OPENSSL30
void QCryptographicHashPrivate::sha3Finish(int bitCount, Sha3Variant sha3Variant)
{
/*
FIPS 202 §6.1 defines SHA-3 in terms of calculating the Keccak function
over the original message with the two-bit suffix "01" appended to it.
This variable stores that suffix (and it's fed into the calculations
when the hash is returned to users).
Only 2 bits of this variable are actually used (see the call to sha3Update
below). The Keccak implementation we're using will actually use the
*leftmost* 2 bits, and interpret them right-to-left. In other words, the
bits must appear in order of *increasing* significance; and as the two most
significant bits of the byte -- the rightmost 6 are ignored. (Yes, this
seems self-contradictory, but it's the way it is...)
Overall, this means:
* the leftmost two bits must be "10" (not "01"!);
* we don't care what the other six bits are set to (they can be set to
any value), but we arbitrarily set them to 0;
and for an unsigned char this gives us 0b10'00'00'00, or 0x80.
*/
static const unsigned char sha3FinalSuffix = 0x80;
result.resizeForOverwrite(bitCount / 8);
SHA3Context copy = sha3Context;
switch (sha3Variant) {
case Sha3Variant::Sha3:
sha3Update(&copy, reinterpret_cast<const BitSequence *>(&sha3FinalSuffix), 2);
break;
case Sha3Variant::Keccak:
break;
}
sha3Final(&copy, result.data());
}
#endif // !QT_CONFIG(opensslv30)
#endif
/*!
\class QCryptographicHash
\inmodule QtCore
\brief The QCryptographicHash class provides a way to generate cryptographic hashes.
\since 4.3
\ingroup tools
\reentrant
QCryptographicHash can be used to generate cryptographic hashes of binary or text data.
Refer to the documentation of the \l QCryptographicHash::Algorithm enum for a
list of the supported algorithms.
*/
/*!
\enum QCryptographicHash::Algorithm
\note In Qt versions before 5.9, when asked to generate a SHA3 hash sum,
QCryptographicHash actually calculated Keccak. If you need compatibility with
SHA-3 hashes produced by those versions of Qt, use the \c{Keccak_}
enumerators. Alternatively, if source compatibility is required, define the
macro \c QT_SHA3_KECCAK_COMPAT.
\value Md4 Generate an MD4 hash sum
\value Md5 Generate an MD5 hash sum
\value Sha1 Generate an SHA-1 hash sum
\value Sha224 Generate an SHA-224 hash sum (SHA-2). Introduced in Qt 5.0
\value Sha256 Generate an SHA-256 hash sum (SHA-2). Introduced in Qt 5.0
\value Sha384 Generate an SHA-384 hash sum (SHA-2). Introduced in Qt 5.0
\value Sha512 Generate an SHA-512 hash sum (SHA-2). Introduced in Qt 5.0
\value Sha3_224 Generate an SHA3-224 hash sum. Introduced in Qt 5.1
\value Sha3_256 Generate an SHA3-256 hash sum. Introduced in Qt 5.1
\value Sha3_384 Generate an SHA3-384 hash sum. Introduced in Qt 5.1
\value Sha3_512 Generate an SHA3-512 hash sum. Introduced in Qt 5.1
\value Keccak_224 Generate a Keccak-224 hash sum. Introduced in Qt 5.9.2
\value Keccak_256 Generate a Keccak-256 hash sum. Introduced in Qt 5.9.2
\value Keccak_384 Generate a Keccak-384 hash sum. Introduced in Qt 5.9.2
\value Keccak_512 Generate a Keccak-512 hash sum. Introduced in Qt 5.9.2
\value Blake2b_160 Generate a BLAKE2b-160 hash sum. Introduced in Qt 6.0
\value Blake2b_256 Generate a BLAKE2b-256 hash sum. Introduced in Qt 6.0
\value Blake2b_384 Generate a BLAKE2b-384 hash sum. Introduced in Qt 6.0
\value Blake2b_512 Generate a BLAKE2b-512 hash sum. Introduced in Qt 6.0
\value Blake2s_128 Generate a BLAKE2s-128 hash sum. Introduced in Qt 6.0
\value Blake2s_160 Generate a BLAKE2s-160 hash sum. Introduced in Qt 6.0
\value Blake2s_224 Generate a BLAKE2s-224 hash sum. Introduced in Qt 6.0
\value Blake2s_256 Generate a BLAKE2s-256 hash sum. Introduced in Qt 6.0
\omitvalue RealSha3_224
\omitvalue RealSha3_256
\omitvalue RealSha3_384
\omitvalue RealSha3_512
*/
/*!
Constructs an object that can be used to create a cryptographic hash from data using \a method.
*/
QCryptographicHash::QCryptographicHash(Algorithm method)
: d(new QCryptographicHashPrivate{method})
{
}
/*!
\fn QCryptographicHash::QCryptographicHash(QCryptographicHash &&other)
Move-constructs a new QCryptographicHash from \a other.
\note The moved-from object \a other is placed in a
partially-formed state, in which the only valid operations are
destruction and assignment of a new value.
\since 6.5
*/
/*!
Destroys the object.
*/
QCryptographicHash::~QCryptographicHash()
{
delete d;
}
/*!
\fn QCryptographicHash &QCryptographicHash::operator=(QCryptographicHash &&other)
Move-assigns \a other to this QCryptographicHash instance.
\note The moved-from object \a other is placed in a
partially-formed state, in which the only valid operations are
destruction and assignment of a new value.
\since 6.5
*/
/*!
\fn void QCryptographicHash::swap(QCryptographicHash &other)
Swaps cryptographic hash \a other with this cryptographic hash. This
operation is very fast and never fails.
\since 6.5
*/
/*!
Resets the object.
*/
void QCryptographicHash::reset() noexcept
{
d->reset();
}
/*!
Returns the algorithm used to generate the cryptographic hash.
\since 6.5
*/
QCryptographicHash::Algorithm QCryptographicHash::algorithm() const noexcept
{
return d->method;
}
void QCryptographicHashPrivate::reset() noexcept
{
result.clear();
#ifdef USING_OPENSSL30
if (method == QCryptographicHash::Blake2b_160 ||
method == QCryptographicHash::Blake2b_256 ||
method == QCryptographicHash::Blake2b_384) {
new (&blake2bContext) blake2b_state;
blake2b_init(&blake2bContext, hashLengthInternal(method));
return;
} else if (method == QCryptographicHash::Blake2s_128 ||
method == QCryptographicHash::Blake2s_160 ||
method == QCryptographicHash::Blake2s_224) {
new (&blake2sContext) blake2s_state;
blake2s_init(&blake2sContext, hashLengthInternal(method));
return;
}
initializationFailed = true;
if (method == QCryptographicHash::Md4) {
/*
* We need to load the legacy provider in order to have the MD4
* algorithm available.
*/
if (!OSSL_PROVIDER_load(nullptr, "legacy"))
return;
if (!OSSL_PROVIDER_load(nullptr, "default"))
return;
}
context = EVP_MD_CTX_ptr(EVP_MD_CTX_new());
if (!context) {
return;
}
/*
* Using the "-fips" option will disable the global "fips=yes" for
* this one lookup and the algorithm can be fetched from any provider
* that implements the algorithm (including the FIPS provider).
*/
algorithm = EVP_MD_ptr(EVP_MD_fetch(nullptr, methodToName(method), "-fips"));
if (!algorithm) {
return;
}
initializationFailed = !EVP_DigestInit_ex(context.get(), algorithm.get(), nullptr);
#else
switch (method) {
case QCryptographicHash::Sha1:
new (&sha1Context) Sha1State;
sha1InitState(&sha1Context);
break;
#ifdef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
default:
Q_ASSERT_X(false, "QCryptographicHash", "Method not compiled in");
Q_UNREACHABLE();
break;
#else
case QCryptographicHash::Md4:
new (&md4Context) md4_context;
md4_init(&md4Context);
break;
case QCryptographicHash::Md5:
new (&md5Context) MD5Context;
MD5Init(&md5Context);
break;
case QCryptographicHash::Sha224:
new (&sha224Context) SHA224Context;
SHA224Reset(&sha224Context);
break;
case QCryptographicHash::Sha256:
new (&sha256Context) SHA256Context;
SHA256Reset(&sha256Context);
break;
case QCryptographicHash::Sha384:
new (&sha384Context) SHA384Context;
SHA384Reset(&sha384Context);
break;
case QCryptographicHash::Sha512:
new (&sha512Context) SHA512Context;
SHA512Reset(&sha512Context);
break;
case QCryptographicHash::RealSha3_224:
case QCryptographicHash::Keccak_224:
case QCryptographicHash::RealSha3_256:
case QCryptographicHash::Keccak_256:
case QCryptographicHash::RealSha3_384:
case QCryptographicHash::Keccak_384:
case QCryptographicHash::RealSha3_512:
case QCryptographicHash::Keccak_512:
new (&sha3Context) SHA3Context;
sha3Init(&sha3Context, hashLengthInternal(method) * 8);
break;
case QCryptographicHash::Blake2b_160:
case QCryptographicHash::Blake2b_256:
case QCryptographicHash::Blake2b_384:
case QCryptographicHash::Blake2b_512:
new (&blake2bContext) blake2b_state;
blake2b_init(&blake2bContext, hashLengthInternal(method));
break;
case QCryptographicHash::Blake2s_128:
case QCryptographicHash::Blake2s_160:
case QCryptographicHash::Blake2s_224:
case QCryptographicHash::Blake2s_256:
new (&blake2sContext) blake2s_state;
blake2s_init(&blake2sContext, hashLengthInternal(method));
break;
#endif
}
#endif // !QT_CONFIG(opensslv30)
}
#if QT_DEPRECATED_SINCE(6, 4)
/*!
Adds the first \a length chars of \a data to the cryptographic
hash.
\obsolete
Use the QByteArrayView overload instead.
*/
void QCryptographicHash::addData(const char *data, qsizetype length)
{
Q_ASSERT(length >= 0);
addData(QByteArrayView{data, length});
}
#endif
/*!
Adds the characters in \a bytes to the cryptographic hash.
\note In Qt versions prior to 6.3, this function took QByteArray,
not QByteArrayView.
*/
void QCryptographicHash::addData(QByteArrayView bytes) noexcept
{
d->addData(bytes);
}
void QCryptographicHashPrivate::addData(QByteArrayView bytes) noexcept
{
const char *data = bytes.data();
auto length = bytes.size();
#if QT_POINTER_SIZE == 8
// feed the data UINT_MAX bytes at a time, as some of the methods below
// take a uint (of course, feeding more than 4G of data into the hashing
// functions will be pretty slow anyway)
for (auto remaining = length; remaining; remaining -= length, data += length) {
length = qMin(qsizetype(std::numeric_limits<uint>::max()), remaining);
#else
{
#endif
#ifdef USING_OPENSSL30
if (method == QCryptographicHash::Blake2b_160 ||
method == QCryptographicHash::Blake2b_256 ||
method == QCryptographicHash::Blake2b_384) {
blake2b_update(&blake2bContext, reinterpret_cast<const uint8_t *>(data), length);
} else if (method == QCryptographicHash::Blake2s_128 ||
method == QCryptographicHash::Blake2s_160 ||
method == QCryptographicHash::Blake2s_224) {
blake2s_update(&blake2sContext, reinterpret_cast<const uint8_t *>(data), length);
} else if (!initializationFailed) {
EVP_DigestUpdate(context.get(), (const unsigned char *)data, length);
}
#else
switch (method) {
case QCryptographicHash::Sha1:
sha1Update(&sha1Context, (const unsigned char *)data, length);
break;
#ifdef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
default:
Q_ASSERT_X(false, "QCryptographicHash", "Method not compiled in");
Q_UNREACHABLE();
break;
#else
case QCryptographicHash::Md4:
md4_update(&md4Context, (const unsigned char *)data, length);
break;
case QCryptographicHash::Md5:
MD5Update(&md5Context, (const unsigned char *)data, length);
break;
case QCryptographicHash::Sha224:
SHA224Input(&sha224Context, reinterpret_cast<const unsigned char *>(data), length);
break;
case QCryptographicHash::Sha256:
SHA256Input(&sha256Context, reinterpret_cast<const unsigned char *>(data), length);
break;
case QCryptographicHash::Sha384:
SHA384Input(&sha384Context, reinterpret_cast<const unsigned char *>(data), length);
break;
case QCryptographicHash::Sha512:
SHA512Input(&sha512Context, reinterpret_cast<const unsigned char *>(data), length);
break;
case QCryptographicHash::RealSha3_224:
case QCryptographicHash::Keccak_224:
case QCryptographicHash::RealSha3_256:
case QCryptographicHash::Keccak_256:
case QCryptographicHash::RealSha3_384:
case QCryptographicHash::Keccak_384:
case QCryptographicHash::RealSha3_512:
case QCryptographicHash::Keccak_512:
sha3Update(&sha3Context, reinterpret_cast<const BitSequence *>(data), uint64_t(length) * 8);
break;
case QCryptographicHash::Blake2b_160:
case QCryptographicHash::Blake2b_256:
case QCryptographicHash::Blake2b_384:
case QCryptographicHash::Blake2b_512:
blake2b_update(&blake2bContext, reinterpret_cast<const uint8_t *>(data), length);
break;
case QCryptographicHash::Blake2s_128:
case QCryptographicHash::Blake2s_160:
case QCryptographicHash::Blake2s_224:
case QCryptographicHash::Blake2s_256:
blake2s_update(&blake2sContext, reinterpret_cast<const uint8_t *>(data), length);
break;
#endif
}
#endif // !QT_CONFIG(opensslv30)
}
result.clear();
}
/*!
Reads the data from the open QIODevice \a device until it ends
and hashes it. Returns \c true if reading was successful.
\since 5.0
*/
bool QCryptographicHash::addData(QIODevice *device)
{
return d->addData(device);
}
bool QCryptographicHashPrivate::addData(QIODevice *device)
{
if (!device->isReadable())
return false;
if (!device->isOpen())
return false;
char buffer[1024];
qint64 length;
while ((length = device->read(buffer, sizeof(buffer))) > 0)
addData({buffer, qsizetype(length)}); // length always <= 1024
return device->atEnd();
}
/*!
Returns the final hash value.
\sa resultView(), QByteArray::toHex()
*/
QByteArray QCryptographicHash::result() const
{
return resultView().toByteArray();
}
/*!
\since 6.3
Returns the final hash value.
Note that the returned view remains valid only as long as the QCryptographicHash object is
not modified by other means.
\sa result()
*/
QByteArrayView QCryptographicHash::resultView() const noexcept
{
// resultView() is a const function, so concurrent calls are allowed; protect:
d->finalize();
// resultView() remains(!) valid even after we dropped the mutex in finalize()
return d->resultView();
}
/*!
\internal
Calls finalizeUnchecked(), if needed, under finalizeMutex protection.
*/
void QCryptographicHashPrivate::finalize() noexcept
{
const auto lock = qt_scoped_lock(finalizeMutex);
// check that no other thread already finalizeUnchecked()'ed before us:
if (!result.isEmpty())
return;
finalizeUnchecked();
}
/*!
\internal
Must be called with finalizeMutex held (except from static hash() function,
where no sharing can take place).
*/
void QCryptographicHashPrivate::finalizeUnchecked() noexcept
{
#ifdef USING_OPENSSL30
if (method == QCryptographicHash::Blake2b_160 ||
method == QCryptographicHash::Blake2b_256 ||
method == QCryptographicHash::Blake2b_384) {
const auto length = hashLengthInternal(method);
blake2b_state copy = blake2bContext;
result.resizeForOverwrite(length);
blake2b_final(&copy, result.data(), length);
} else if (method == QCryptographicHash::Blake2s_128 ||
method == QCryptographicHash::Blake2s_160 ||
method == QCryptographicHash::Blake2s_224) {
const auto length = hashLengthInternal(method);
blake2s_state copy = blake2sContext;
result.resizeForOverwrite(length);
blake2s_final(&copy, result.data(), length);
} else if (!initializationFailed) {
EVP_MD_CTX_ptr copy = EVP_MD_CTX_ptr(EVP_MD_CTX_new());
EVP_MD_CTX_copy_ex(copy.get(), context.get());
result.resizeForOverwrite(EVP_MD_get_size(algorithm.get()));
EVP_DigestFinal_ex(copy.get(), result.data(), nullptr);
}
#else
switch (method) {
case QCryptographicHash::Sha1: {
Sha1State copy = sha1Context;
result.resizeForOverwrite(20);
sha1FinalizeState(&copy);
sha1ToHash(&copy, result.data());
break;
}
#ifdef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
default:
Q_ASSERT_X(false, "QCryptographicHash", "Method not compiled in");
Q_UNREACHABLE();
break;
#else
case QCryptographicHash::Md4: {
md4_context copy = md4Context;
result.resizeForOverwrite(MD4_RESULTLEN);
md4_final(&copy, result.data());
break;
}
case QCryptographicHash::Md5: {
MD5Context copy = md5Context;
result.resizeForOverwrite(16);
MD5Final(&copy, result.data());
break;
}
case QCryptographicHash::Sha224: {
SHA224Context copy = sha224Context;
result.resizeForOverwrite(SHA224HashSize);
SHA224Result(&copy, result.data());
break;
}
case QCryptographicHash::Sha256: {
SHA256Context copy = sha256Context;
result.resizeForOverwrite(SHA256HashSize);
SHA256Result(&copy, result.data());
break;
}
case QCryptographicHash::Sha384: {
SHA384Context copy = sha384Context;
result.resizeForOverwrite(SHA384HashSize);
SHA384Result(&copy, result.data());
break;
}
case QCryptographicHash::Sha512: {
SHA512Context copy = sha512Context;
result.resizeForOverwrite(SHA512HashSize);
SHA512Result(&copy, result.data());
break;
}
case QCryptographicHash::RealSha3_224:
case QCryptographicHash::RealSha3_256:
case QCryptographicHash::RealSha3_384:
case QCryptographicHash::RealSha3_512: {
sha3Finish(8 * hashLengthInternal(method), Sha3Variant::Sha3);
break;
}
case QCryptographicHash::Keccak_224:
case QCryptographicHash::Keccak_256:
case QCryptographicHash::Keccak_384:
case QCryptographicHash::Keccak_512: {
sha3Finish(8 * hashLengthInternal(method), Sha3Variant::Keccak);
break;
}
case QCryptographicHash::Blake2b_160:
case QCryptographicHash::Blake2b_256:
case QCryptographicHash::Blake2b_384:
case QCryptographicHash::Blake2b_512: {
const auto length = hashLengthInternal(method);
blake2b_state copy = blake2bContext;
result.resizeForOverwrite(length);
blake2b_final(&copy, result.data(), length);
break;
}
case QCryptographicHash::Blake2s_128:
case QCryptographicHash::Blake2s_160:
case QCryptographicHash::Blake2s_224:
case QCryptographicHash::Blake2s_256: {
const auto length = hashLengthInternal(method);
blake2s_state copy = blake2sContext;
result.resizeForOverwrite(length);
blake2s_final(&copy, result.data(), length);
break;
}
#endif
}
#endif // !QT_CONFIG(opensslv30)
}
/*!
Returns the hash of \a data using \a method.
\note In Qt versions prior to 6.3, this function took QByteArray,
not QByteArrayView.
*/
QByteArray QCryptographicHash::hash(QByteArrayView data, Algorithm method)
{
QCryptographicHashPrivate hash(method);
hash.addData(data);
hash.finalizeUnchecked(); // no mutex needed: no-one but us has access to 'hash'
return hash.resultView().toByteArray();
}
/*!
Returns the size of the output of the selected hash \a method in bytes.
\since 5.12
*/
int QCryptographicHash::hashLength(QCryptographicHash::Algorithm method)
{
return hashLengthInternal(method);
}
/*!
Returns whether the selected algorithm \a method is supported and if
result() will return a value when the \a method is used.
\note OpenSSL will be responsible for providing this information when
used as a provider, otherwise \c true will be returned as the non-OpenSSL
implementation doesn't have any restrictions.
We return \c false if we fail to query OpenSSL.
\since 6.5
*/
bool QCryptographicHash::supportsAlgorithm(QCryptographicHash::Algorithm method)
{
return QCryptographicHashPrivate::supportsAlgorithm(method);
}
bool QCryptographicHashPrivate::supportsAlgorithm(QCryptographicHash::Algorithm method)
{
#ifdef USING_OPENSSL30
OSSL_PROVIDER_load(nullptr, "legacy");
OSSL_PROVIDER_load(nullptr, "default");
const char *restriction = "-fips";
EVP_MD_ptr algorithm = EVP_MD_ptr(EVP_MD_fetch(nullptr, methodToName(method), restriction));
return algorithm != nullptr;
#else
Q_UNUSED(method);
return true;
#endif
}
static int qt_hash_block_size(QCryptographicHash::Algorithm method)
{
switch (method) {
case QCryptographicHash::Sha1:
return SHA1_Message_Block_Size;
#ifndef QT_CRYPTOGRAPHICHASH_ONLY_SHA1
case QCryptographicHash::Md4:
return 64;
case QCryptographicHash::Md5:
return 64;
case QCryptographicHash::Sha224:
return SHA224_Message_Block_Size;
case QCryptographicHash::Sha256:
return SHA256_Message_Block_Size;
case QCryptographicHash::Sha384:
return SHA384_Message_Block_Size;
case QCryptographicHash::Sha512:
return SHA512_Message_Block_Size;
case QCryptographicHash::RealSha3_224:
case QCryptographicHash::Keccak_224:
return 144;
case QCryptographicHash::RealSha3_256:
case QCryptographicHash::Keccak_256:
return 136;
case QCryptographicHash::RealSha3_384:
case QCryptographicHash::Keccak_384:
return 104;
case QCryptographicHash::RealSha3_512:
case QCryptographicHash::Keccak_512:
return 72;
case QCryptographicHash::Blake2b_160:
case QCryptographicHash::Blake2b_256:
case QCryptographicHash::Blake2b_384:
case QCryptographicHash::Blake2b_512:
return BLAKE2B_BLOCKBYTES;
case QCryptographicHash::Blake2s_128:
case QCryptographicHash::Blake2s_160:
case QCryptographicHash::Blake2s_224:
case QCryptographicHash::Blake2s_256:
return BLAKE2S_BLOCKBYTES;
#endif // QT_CRYPTOGRAPHICHASH_ONLY_SHA1
}
return 0;
}
class QMessageAuthenticationCodePrivate
{
public:
QMessageAuthenticationCodePrivate(QCryptographicHash::Algorithm m)
: messageHash(m), method(m)
{
}
QByteArray key;
QByteArray result;
QBasicMutex finalizeMutex;
QCryptographicHash messageHash;
const QCryptographicHash::Algorithm method;
void initMessageHash();
void finalize();
// when not called from the static hash() function, this function needs to be
// called with finalizeMutex held:
void finalizeUnchecked();
// END functions that need to be called with finalizeMutex held
};
/*!
\internal
Transforms key into a block-sized format and then seeds messageHash from it.
This function assumes that messageHash is in its initial state (reset() has
been called).
*/
void QMessageAuthenticationCodePrivate::initMessageHash()
{
const int blockSize = qt_hash_block_size(method);
if (key.size() > blockSize) {
messageHash.addData(key);
key = messageHash.result();
messageHash.reset();
}
if (key.size() < blockSize) {
const int size = key.size();
key.resize(blockSize);
memset(key.data() + size, 0, blockSize - size);
}
QVarLengthArray<char> iKeyPad(blockSize);
const char * const keyData = key.constData();
for (int i = 0; i < blockSize; ++i)
iKeyPad[i] = keyData[i] ^ 0x36;
messageHash.addData(iKeyPad);
}
/*!
\class QMessageAuthenticationCode
\inmodule QtCore
\brief The QMessageAuthenticationCode class provides a way to generate
hash-based message authentication codes.
\since 5.1
\ingroup tools
\reentrant
QMessageAuthenticationCode supports all cryptographic hashes which are supported by
QCryptographicHash.
To generate message authentication code, pass hash algorithm QCryptographicHash::Algorithm
to constructor, then set key and message by setKey() and addData() functions. Result
can be acquired by result() function.
\snippet qmessageauthenticationcode/main.cpp 0
\dots
\snippet qmessageauthenticationcode/main.cpp 1
Alternatively, this effect can be achieved by providing message,
key and method to hash() method.
\snippet qmessageauthenticationcode/main.cpp 2
\sa QCryptographicHash
*/
/*!
Constructs an object that can be used to create a cryptographic hash from data
using method \a method and key \a key.
*/
QMessageAuthenticationCode::QMessageAuthenticationCode(QCryptographicHash::Algorithm method,
const QByteArray &key)
: d(new QMessageAuthenticationCodePrivate(method))
{
d->key = key;
d->initMessageHash();
}
/*!
Destroys the object.
*/
QMessageAuthenticationCode::~QMessageAuthenticationCode()
{
delete d;
}
/*!
Resets message data. Calling this method doesn't affect the key.
*/
void QMessageAuthenticationCode::reset()
{
d->result.clear();
d->messageHash.reset();
d->initMessageHash();
}
/*!
Sets secret \a key. Calling this method automatically resets the object state.
For optimal performance, call this method only to \e change the active key,
not to set an \e initial key, as in
\code
QMessageAuthenticationCode mac(method);
mac.setKey(key); // does extra work
use(mac);
\endcode
Perfer to pass initial keys as the constructor argument:
\code
QMessageAuthenticationCode mac(method, key); // OK, optimal
use(mac);
\endcode
You can use std::optional to delay construction of a
QMessageAuthenticationCode until you know the key:
\code
std::optional<QMessageAuthenticationCode> mac;
~~~
key = ~~~;
mac.emplace(method, key);
use(*mac);
\endcode
*/
void QMessageAuthenticationCode::setKey(const QByteArray &key)
{
d->key = key;
reset();
}
/*!
Adds the first \a length chars of \a data to the message.
*/
void QMessageAuthenticationCode::addData(const char *data, qsizetype length)
{
d->messageHash.addData({data, length});
}
/*!
\overload addData()
*/
void QMessageAuthenticationCode::addData(const QByteArray &data)
{
d->messageHash.addData(data);
}
/*!
Reads the data from the open QIODevice \a device until it ends
and adds it to message. Returns \c true if reading was successful.
\note \a device must be already opened.
*/
bool QMessageAuthenticationCode::addData(QIODevice *device)
{
return d->messageHash.addData(device);
}
/*!
Returns the final authentication code.
\sa QByteArray::toHex()
*/
QByteArray QMessageAuthenticationCode::result() const
{
d->finalize();
return d->result;
}
void QMessageAuthenticationCodePrivate::finalize()
{
const auto lock = qt_scoped_lock(finalizeMutex);
if (!result.isEmpty())
return;
finalizeUnchecked();
}
void QMessageAuthenticationCodePrivate::finalizeUnchecked()
{
const int blockSize = qt_hash_block_size(method);
QByteArrayView hashedMessage = messageHash.resultView();
QVarLengthArray<char> oKeyPad(blockSize);
const char * const keyData = key.constData();
for (int i = 0; i < blockSize; ++i)
oKeyPad[i] = keyData[i] ^ 0x5c;
QCryptographicHashPrivate hash(method);
hash.addData(oKeyPad);
hash.addData(hashedMessage);
hash.finalizeUnchecked();
result = hash.resultView().toByteArray();
}
/*!
Returns the authentication code for the message \a message using
the key \a key and the method \a method.
*/
QByteArray QMessageAuthenticationCode::hash(const QByteArray &message, const QByteArray &key,
QCryptographicHash::Algorithm method)
{
QMessageAuthenticationCodePrivate mac(method);
mac.key = key;
mac.initMessageHash();
mac.messageHash.addData(message);
mac.finalizeUnchecked();
return mac.result;
}
QT_END_NAMESPACE
#ifndef QT_NO_QOBJECT
#include "moc_qcryptographichash.cpp"
#endif