qtbase/src/corelib/text/qbytearray.cpp
Ahmad Samir a15639a3ab QByteArray: make replace(pos, len, view) consistent with QString's
Return early if `pos` is out-of-bounds.

Amends 57d91d8029064b592dee8adf819bde676763df28 (also part of this
commit message was borrowed from it).

[ChangeLog][QtCore][Important Behavior Changes][QByteArray] replace()
is now consistent with QString::replace() in its treatment of
out-of-bounds indexes.

Change-Id: Iae8cf795364654fd6438b2a4ed3162925a73cb9e
Reviewed-by: Ivan Solovev <ivan.solovev@qt.io>
Reviewed-by: Thiago Macieira <thiago.macieira@intel.com>
2025-05-20 02:50:03 +03:00

5227 lines
155 KiB
C++

// Copyright (C) 2022 The Qt Company Ltd.
// Copyright (C) 2016 Intel Corporation.
// Copyright (C) 2019 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com, author Giuseppe D'Angelo <giuseppe.dangelo@kdab.com>
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only
// Qt-Security score:critical reason:data-parser
#include "qbytearray.h"
#include "qbytearraymatcher.h"
#include "private/qtools_p.h"
#include "qhashfunctions.h"
#include "qlist.h"
#include "qlocale_p.h"
#include "qlocale_tools_p.h"
#include "private/qnumeric_p.h"
#include "private/qsimd_p.h"
#include "qstringalgorithms_p.h"
#include "qscopedpointer.h"
#include "qstringconverter_p.h"
#include <qdatastream.h>
#include <qmath.h>
#if defined(Q_OS_WASM)
#include "private/qstdweb_p.h"
#endif
#ifndef QT_NO_COMPRESS
#include <zconf.h>
#include <zlib.h>
#include <qxpfunctional.h>
#endif
#include <ctype.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <QtCore/q26numeric.h>
#include <string>
#ifdef Q_OS_WIN
# if !defined(QT_BOOTSTRAPPED) && (defined(QT_NO_CAST_FROM_ASCII) || defined(QT_NO_CAST_FROM_BYTEARRAY))
// MSVC requires this, but let's apply it to MinGW compilers too, just in case
# error "This file cannot be compiled with QT_NO_CAST_{TO,FROM}_ASCII, " \
"otherwise some QByteArray functions will not get exported."
# endif
#endif
QT_BEGIN_NAMESPACE
Q_CONSTINIT const char QByteArray::_empty = '\0';
// ASCII case system, used by QByteArray::to{Upper,Lower}() and qstr(n)icmp():
static constexpr inline uchar asciiUpper(uchar c)
{
return c >= 'a' && c <= 'z' ? c & ~0x20 : c;
}
static constexpr inline uchar asciiLower(uchar c)
{
return c >= 'A' && c <= 'Z' ? c | 0x20 : c;
}
/*****************************************************************************
Safe and portable C string functions; extensions to standard string.h
*****************************************************************************/
/*! \relates QByteArray
\internal
Wrapper around memrchr() for systems that don't have it. It's provided in
every system because, as a GNU extension, memrchr() may not be declared in
string.h depending on how strict the compiler was asked to be.
Used in QByteArrayView::lastIndexOf() overload for a single char.
*/
const void *qmemrchr(const void *s, int needle, size_t size) noexcept
{
#if QT_CONFIG(memrchr)
return memrchr(s, needle, size);
#endif
auto b = static_cast<const uchar *>(s);
const uchar *n = b + size;
while (n-- != b) {
if (*n == uchar(needle))
return n;
}
return nullptr;
}
/*! \relates QByteArray
Returns a duplicate string.
Allocates space for a copy of \a src, copies it, and returns a
pointer to the copy. If \a src is \nullptr, it immediately returns
\nullptr.
Ownership is passed to the caller, so the returned string must be
deleted using \c delete[].
*/
char *qstrdup(const char *src)
{
if (!src)
return nullptr;
char *dst = new char[strlen(src) + 1];
return qstrcpy(dst, src);
}
/*! \relates QByteArray
Copies all the characters up to and including the '\\0' from \a
src into \a dst and returns a pointer to \a dst. If \a src is
\nullptr, it immediately returns \nullptr.
This function assumes that \a dst is large enough to hold the
contents of \a src.
\note If \a dst and \a src overlap, the behavior is undefined.
\sa qstrncpy()
*/
char *qstrcpy(char *dst, const char *src)
{
if (!src)
return nullptr;
#ifdef Q_CC_MSVC
const size_t len = strlen(src);
// This is actually not secure!!! It will be fixed
// properly in a later release!
if (len >= 0 && strcpy_s(dst, len+1, src) == 0)
return dst;
return nullptr;
#else
return strcpy(dst, src);
#endif
}
/*! \relates QByteArray
A safe \c strncpy() function.
Copies at most \a len bytes from \a src (stopping at \a len or the
terminating '\\0' whichever comes first) into \a dst. Guarantees that \a
dst is '\\0'-terminated, except when \a dst is \nullptr or \a len is 0. If
\a src is \nullptr, returns \nullptr, otherwise returns \a dst.
This function assumes that \a dst is at least \a len characters
long.
\note If \a dst and \a src overlap, the behavior is undefined.
\note Unlike strncpy(), this function does \e not write '\\0' to all \a
len bytes of \a dst, but stops after the terminating '\\0'. In this sense,
it's similar to C11's strncpy_s().
\sa qstrcpy()
*/
char *qstrncpy(char *dst, const char *src, size_t len)
{
if (dst && len > 0) {
*dst = '\0';
if (src)
std::strncat(dst, src, len - 1);
}
return src ? dst : nullptr;
}
/*! \fn size_t qstrlen(const char *str)
\relates QByteArray
A safe \c strlen() function.
Returns the number of characters that precede the terminating '\\0',
or 0 if \a str is \nullptr.
\sa qstrnlen()
*/
/*! \fn size_t qstrnlen(const char *str, size_t maxlen)
\relates QByteArray
\since 4.2
A safe \c strnlen() function.
Returns the number of characters that precede the terminating '\\0', but
at most \a maxlen. If \a str is \nullptr, returns 0.
\sa qstrlen()
*/
/*!
\relates QByteArray
A safe \c strcmp() function.
Compares \a str1 and \a str2. Returns a negative value if \a str1
is less than \a str2, 0 if \a str1 is equal to \a str2 or a
positive value if \a str1 is greater than \a str2.
If both strings are \nullptr, they are deemed equal; otherwise, if either is
\nullptr, it is treated as less than the other (even if the other is an
empty string).
\sa qstrncmp(), qstricmp(), qstrnicmp(), {Character Case},
QByteArray::compare()
*/
int qstrcmp(const char *str1, const char *str2)
{
return (str1 && str2) ? strcmp(str1, str2)
: (str1 ? 1 : (str2 ? -1 : 0));
}
/*! \fn int qstrncmp(const char *str1, const char *str2, size_t len);
\relates QByteArray
A safe \c strncmp() function.
Compares at most \a len bytes of \a str1 and \a str2.
Returns a negative value if \a str1 is less than \a str2, 0 if \a
str1 is equal to \a str2 or a positive value if \a str1 is greater
than \a str2.
If both strings are \nullptr, they are deemed equal; otherwise, if either is
\nullptr, it is treated as less than the other (even if the other is an
empty string or \a len is 0).
\sa qstrcmp(), qstricmp(), qstrnicmp(), {Character Case},
QByteArray::compare()
*/
/*! \relates QByteArray
A safe \c stricmp() function.
Compares \a str1 and \a str2, ignoring differences in the case of any ASCII
characters.
Returns a negative value if \a str1 is less than \a str2, 0 if \a
str1 is equal to \a str2 or a positive value if \a str1 is greater
than \a str2.
If both strings are \nullptr, they are deemed equal; otherwise, if either is
\nullptr, it is treated as less than the other (even if the other is an
empty string).
\sa qstrcmp(), qstrncmp(), qstrnicmp(), {Character Case},
QByteArray::compare()
*/
int qstricmp(const char *str1, const char *str2)
{
const uchar *s1 = reinterpret_cast<const uchar *>(str1);
const uchar *s2 = reinterpret_cast<const uchar *>(str2);
if (!s1)
return s2 ? -1 : 0;
if (!s2)
return 1;
enum { Incomplete = 256 };
qptrdiff offset = 0;
auto innerCompare = [=, &offset](qptrdiff max, bool unlimited) {
max += offset;
do {
uchar c = s1[offset];
if (int res = QtMiscUtils::caseCompareAscii(c, s2[offset]))
return res;
if (!c)
return 0;
++offset;
} while (unlimited || offset < max);
return int(Incomplete);
};
#if defined(__SSE4_1__) && !(defined(__SANITIZE_ADDRESS__) || __has_feature(address_sanitizer))
enum { PageSize = 4096, PageMask = PageSize - 1 };
const __m128i zero = _mm_setzero_si128();
forever {
// Calculate how many bytes we can load until we cross a page boundary
// for either source. This isn't an exact calculation, just something
// very quick.
quintptr u1 = quintptr(s1 + offset);
quintptr u2 = quintptr(s2 + offset);
size_t n = PageSize - ((u1 | u2) & PageMask);
qptrdiff maxoffset = offset + n;
for ( ; offset + 16 <= maxoffset; offset += sizeof(__m128i)) {
// load 16 bytes from either source
__m128i a = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s1 + offset));
__m128i b = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s2 + offset));
// compare the two against each other
__m128i cmp = _mm_cmpeq_epi8(a, b);
// find NUL terminators too
cmp = _mm_min_epu8(cmp, a);
cmp = _mm_cmpeq_epi8(cmp, zero);
// was there any difference or a NUL?
uint mask = _mm_movemask_epi8(cmp);
if (mask) {
// yes, find out where
uint start = qCountTrailingZeroBits(mask);
uint end = sizeof(mask) * 8 - qCountLeadingZeroBits(mask);
Q_ASSERT(end >= start);
offset += start;
n = end - start;
break;
}
}
// using SIMD could cause a page fault, so iterate byte by byte
int res = innerCompare(n, false);
if (res != Incomplete)
return res;
}
#endif
return innerCompare(-1, true);
}
/*! \relates QByteArray
A safe \c strnicmp() function.
Compares at most \a len bytes of \a str1 and \a str2, ignoring differences
in the case of any ASCII characters.
Returns a negative value if \a str1 is less than \a str2, 0 if \a str1
is equal to \a str2 or a positive value if \a str1 is greater than \a
str2.
If both strings are \nullptr, they are deemed equal; otherwise, if either is
\nullptr, it is treated as less than the other (even if the other is an
empty string or \a len is 0).
\sa qstrcmp(), qstrncmp(), qstricmp(), {Character Case},
QByteArray::compare()
*/
int qstrnicmp(const char *str1, const char *str2, size_t len)
{
const uchar *s1 = reinterpret_cast<const uchar *>(str1);
const uchar *s2 = reinterpret_cast<const uchar *>(str2);
if (!s1 || !s2)
return s1 ? 1 : (s2 ? -1 : 0);
for (; len--; ++s1, ++s2) {
const uchar c = *s1;
if (int res = QtMiscUtils::caseCompareAscii(c, *s2))
return res;
if (!c) // strings are equal
break;
}
return 0;
}
/*!
\internal
\since 5.12
A helper for QByteArray::compare. Compares \a len1 bytes from \a str1 to \a
len2 bytes from \a str2. If \a len2 is -1, then \a str2 is expected to be
'\\0'-terminated.
*/
int qstrnicmp(const char *str1, qsizetype len1, const char *str2, qsizetype len2)
{
Q_ASSERT(len1 >= 0);
Q_ASSERT(len2 >= -1);
const uchar *s1 = reinterpret_cast<const uchar *>(str1);
const uchar *s2 = reinterpret_cast<const uchar *>(str2);
if (!s1 || !len1) {
if (len2 == 0)
return 0;
if (len2 == -1)
return (!s2 || !*s2) ? 0 : -1;
Q_ASSERT(s2);
return -1;
}
if (!s2)
return len1 == 0 ? 0 : 1;
if (len2 == -1) {
// null-terminated str2
qsizetype i;
for (i = 0; i < len1; ++i) {
const uchar c = s2[i];
if (!c)
return 1;
if (int res = QtMiscUtils::caseCompareAscii(s1[i], c))
return res;
}
return s2[i] ? -1 : 0;
} else {
// not null-terminated
const qsizetype len = qMin(len1, len2);
for (qsizetype i = 0; i < len; ++i) {
if (int res = QtMiscUtils::caseCompareAscii(s1[i], s2[i]))
return res;
}
if (len1 == len2)
return 0;
return len1 < len2 ? -1 : 1;
}
}
/*!
\internal
*/
int QtPrivate::compareMemory(QByteArrayView lhs, QByteArrayView rhs)
{
if (!lhs.isNull() && !rhs.isNull()) {
int ret = memcmp(lhs.data(), rhs.data(), qMin(lhs.size(), rhs.size()));
if (ret != 0)
return ret;
}
// they matched qMin(l1, l2) bytes
// so the longer one is lexically after the shorter one
return lhs.size() == rhs.size() ? 0 : lhs.size() > rhs.size() ? 1 : -1;
}
/*!
\internal
*/
bool QtPrivate::isValidUtf8(QByteArrayView s) noexcept
{
return QUtf8::isValidUtf8(s).isValidUtf8;
}
// the CRC table below is created by the following piece of code
#if 0
static void createCRC16Table() // build CRC16 lookup table
{
unsigned int i;
unsigned int j;
unsigned short crc_tbl[16];
unsigned int v0, v1, v2, v3;
for (i = 0; i < 16; i++) {
v0 = i & 1;
v1 = (i >> 1) & 1;
v2 = (i >> 2) & 1;
v3 = (i >> 3) & 1;
j = 0;
#undef SET_BIT
#define SET_BIT(x, b, v) (x) |= (v) << (b)
SET_BIT(j, 0, v0);
SET_BIT(j, 7, v0);
SET_BIT(j, 12, v0);
SET_BIT(j, 1, v1);
SET_BIT(j, 8, v1);
SET_BIT(j, 13, v1);
SET_BIT(j, 2, v2);
SET_BIT(j, 9, v2);
SET_BIT(j, 14, v2);
SET_BIT(j, 3, v3);
SET_BIT(j, 10, v3);
SET_BIT(j, 15, v3);
crc_tbl[i] = j;
}
printf("static const quint16 crc_tbl[16] = {\n");
for (int i = 0; i < 16; i +=4)
printf(" 0x%04x, 0x%04x, 0x%04x, 0x%04x,\n", crc_tbl[i], crc_tbl[i+1], crc_tbl[i+2], crc_tbl[i+3]);
printf("};\n");
}
#endif
static const quint16 crc_tbl[16] = {
0x0000, 0x1081, 0x2102, 0x3183,
0x4204, 0x5285, 0x6306, 0x7387,
0x8408, 0x9489, 0xa50a, 0xb58b,
0xc60c, 0xd68d, 0xe70e, 0xf78f
};
/*!
\relates QByteArray
\since 5.9
Returns the CRC-16 checksum of \a data.
The checksum is independent of the byte order (endianness) and will
be calculated accorded to the algorithm published in \a standard.
By default the algorithm published in ISO 3309 (Qt::ChecksumIso3309) is used.
\note This function is a 16-bit cache conserving (16 entry table)
implementation of the CRC-16-CCITT algorithm.
*/
quint16 qChecksum(QByteArrayView data, Qt::ChecksumType standard)
{
quint16 crc = 0x0000;
switch (standard) {
case Qt::ChecksumIso3309:
crc = 0xffff;
break;
case Qt::ChecksumItuV41:
crc = 0x6363;
break;
}
uchar c;
const uchar *p = reinterpret_cast<const uchar *>(data.data());
qsizetype len = data.size();
while (len--) {
c = *p++;
crc = ((crc >> 4) & 0x0fff) ^ crc_tbl[((crc ^ c) & 15)];
c >>= 4;
crc = ((crc >> 4) & 0x0fff) ^ crc_tbl[((crc ^ c) & 15)];
}
switch (standard) {
case Qt::ChecksumIso3309:
crc = ~crc;
break;
case Qt::ChecksumItuV41:
break;
}
return crc & 0xffff;
}
/*!
\fn QByteArray qCompress(const QByteArray& data, int compressionLevel)
\relates QByteArray
Compresses the \a data byte array and returns the compressed data
in a new byte array.
The \a compressionLevel parameter specifies how much compression
should be used. Valid values are between 0 and 9, with 9
corresponding to the greatest compression (i.e. smaller compressed
data) at the cost of using a slower algorithm. Smaller values (8,
7, ..., 1) provide successively less compression at slightly
faster speeds. The value 0 corresponds to no compression at all.
The default value is -1, which specifies zlib's default
compression.
\sa qUncompress(const QByteArray &data)
*/
/*!
\fn QByteArray qCompress(const uchar* data, qsizetype nbytes, int compressionLevel)
\relates QByteArray
\overload
Compresses the first \a nbytes of \a data at compression level
\a compressionLevel and returns the compressed data in a new byte array.
*/
#ifndef QT_NO_COMPRESS
using CompressSizeHint_t = quint32; // 32-bit BE, historically
enum class ZLibOp : bool { Compression, Decompression };
Q_DECL_COLD_FUNCTION
static const char *zlibOpAsString(ZLibOp op)
{
switch (op) {
case ZLibOp::Compression: return "qCompress";
case ZLibOp::Decompression: return "qUncompress";
}
Q_UNREACHABLE_RETURN(nullptr);
}
Q_DECL_COLD_FUNCTION
static QByteArray zlibError(ZLibOp op, const char *what)
{
qWarning("%s: %s", zlibOpAsString(op), what);
return QByteArray();
}
Q_DECL_COLD_FUNCTION
static QByteArray dataIsNull(ZLibOp op)
{
return zlibError(op, "Data is null");
}
Q_DECL_COLD_FUNCTION
static QByteArray lengthIsNegative(ZLibOp op)
{
return zlibError(op, "Input length is negative");
}
Q_DECL_COLD_FUNCTION
static QByteArray tooMuchData(ZLibOp op)
{
return zlibError(op, "Not enough memory");
}
Q_DECL_COLD_FUNCTION
static QByteArray invalidCompressedData()
{
return zlibError(ZLibOp::Decompression, "Input data is corrupted");
}
Q_DECL_COLD_FUNCTION
static QByteArray unexpectedZlibError(ZLibOp op, int err, const char *msg)
{
qWarning("%s unexpected zlib error: %s (%d)",
zlibOpAsString(op),
msg ? msg : "",
err);
return QByteArray();
}
static QByteArray xxflate(ZLibOp op, QArrayDataPointer<char> out, QByteArrayView input,
qxp::function_ref<int(z_stream *) const> init,
qxp::function_ref<int(z_stream *, size_t) const> processChunk,
qxp::function_ref<void(z_stream *) const> deinit)
{
if (out.data() == nullptr) // allocation failed
return tooMuchData(op);
qsizetype capacity = out.allocatedCapacity();
const auto initalSize = out.size;
z_stream zs = {};
zs.next_in = reinterpret_cast<uchar *>(const_cast<char *>(input.data())); // 1980s C API...
if (const int err = init(&zs); err != Z_OK)
return unexpectedZlibError(op, err, zs.msg);
const auto sg = qScopeGuard([&] { deinit(&zs); });
using ZlibChunkSize_t = decltype(zs.avail_in);
static_assert(!std::is_signed_v<ZlibChunkSize_t>);
static_assert(std::is_same_v<ZlibChunkSize_t, decltype(zs.avail_out)>);
constexpr auto MaxChunkSize = std::numeric_limits<ZlibChunkSize_t>::max();
[[maybe_unused]]
constexpr auto MaxStatisticsSize = std::numeric_limits<decltype(zs.total_out)>::max();
size_t inputLeft = size_t(input.size());
int res;
do {
Q_ASSERT(out.freeSpaceAtBegin() == 0); // ensure prepend optimization stays out of the way
Q_ASSERT(capacity == out.allocatedCapacity());
if (zs.avail_out == 0) {
Q_ASSERT(size_t(out.size) - initalSize > MaxStatisticsSize || // total_out overflow
size_t(out.size) - initalSize == zs.total_out);
Q_ASSERT(out.size <= capacity);
qsizetype avail_out = capacity - out.size;
if (avail_out == 0) {
out->reallocateAndGrow(QArrayData::GrowsAtEnd, 1); // grow to next natural capacity
if (out.data() == nullptr) // reallocation failed
return tooMuchData(op);
capacity = out.allocatedCapacity();
avail_out = capacity - out.size;
}
zs.next_out = reinterpret_cast<uchar *>(out.data()) + out.size;
zs.avail_out = size_t(avail_out) > size_t(MaxChunkSize) ? MaxChunkSize
: ZlibChunkSize_t(avail_out);
out.size += zs.avail_out;
Q_ASSERT(zs.avail_out > 0);
}
if (zs.avail_in == 0) {
// zs.next_in is kept up-to-date by processChunk(), so nothing to do
zs.avail_in = inputLeft > MaxChunkSize ? MaxChunkSize : ZlibChunkSize_t(inputLeft);
inputLeft -= zs.avail_in;
}
res = processChunk(&zs, inputLeft);
} while (res == Z_OK);
switch (res) {
case Z_STREAM_END:
out.size -= zs.avail_out;
Q_ASSERT(size_t(out.size) - initalSize > MaxStatisticsSize || // total_out overflow
size_t(out.size) - initalSize == zs.total_out);
Q_ASSERT(out.size <= out.allocatedCapacity());
out.data()[out.size] = '\0';
return QByteArray(std::move(out));
case Z_MEM_ERROR:
return tooMuchData(op);
case Z_BUF_ERROR:
Q_UNREACHABLE(); // cannot happen - we supply a buffer that can hold the result,
// or else error out early
case Z_DATA_ERROR: // can only happen on decompression
Q_ASSERT(op == ZLibOp::Decompression);
return invalidCompressedData();
default:
return unexpectedZlibError(op, res, zs.msg);
}
}
QByteArray qCompress(const uchar* data, qsizetype nbytes, int compressionLevel)
{
constexpr qsizetype HeaderSize = sizeof(CompressSizeHint_t);
if (nbytes == 0) {
return QByteArray(HeaderSize, '\0');
}
if (!data)
return dataIsNull(ZLibOp::Compression);
if (nbytes < 0)
return lengthIsNegative(ZLibOp::Compression);
if (compressionLevel < -1 || compressionLevel > 9)
compressionLevel = -1;
QArrayDataPointer out = [&] {
constexpr qsizetype SingleAllocLimit = 256 * 1024; // the maximum size for which we use
// zlib's compressBound() to guarantee
// the output buffer size is sufficient
// to hold result
qsizetype capacity = HeaderSize;
if (nbytes < SingleAllocLimit) {
// use maximum size
capacity += compressBound(uLong(nbytes)); // cannot overflow (both times)!
return QArrayDataPointer<char>(capacity);
}
// for larger buffers, assume it compresses optimally, and
// grow geometrically from there:
constexpr qsizetype MaxCompressionFactor = 1024; // max theoretical factor is 1032
// cf. http://www.zlib.org/zlib_tech.html,
// but use a nearby power-of-two (faster)
capacity += std::max(qsizetype(compressBound(uLong(SingleAllocLimit))),
nbytes / MaxCompressionFactor);
return QArrayDataPointer<char>(capacity, 0, QArrayData::Grow);
}();
if (out.data() == nullptr) // allocation failed
return tooMuchData(ZLibOp::Compression);
qToBigEndian(q26::saturate_cast<CompressSizeHint_t>(nbytes), out.data());
out.size = HeaderSize;
return xxflate(ZLibOp::Compression, std::move(out), {data, nbytes},
[=] (z_stream *zs) { return deflateInit(zs, compressionLevel); },
[] (z_stream *zs, size_t inputLeft) {
return deflate(zs, inputLeft ? Z_NO_FLUSH : Z_FINISH);
},
[] (z_stream *zs) { deflateEnd(zs); });
}
#endif
/*!
\fn QByteArray qUncompress(const QByteArray &data)
\relates QByteArray
Uncompresses the \a data byte array and returns a new byte array
with the uncompressed data.
Returns an empty QByteArray if the input data was corrupt.
This function will uncompress data compressed with qCompress()
from this and any earlier Qt version, back to Qt 3.1 when this
feature was added.
\b{Note:} If you want to use this function to uncompress external
data that was compressed using zlib, you first need to prepend a four
byte header to the byte array containing the data. The header must
contain the expected length (in bytes) of the uncompressed data,
expressed as an unsigned, big-endian, 32-bit integer. This number is
just a hint for the initial size of the output buffer size,
though. If the indicated size is too small to hold the result, the
output buffer size will still be increased until either the output
fits or the system runs out of memory. So, despite the 32-bit
header, this function, on 64-bit platforms, can produce more than
4GiB of output.
\note In Qt versions prior to Qt 6.5, more than 2GiB of data
worked unreliably; in Qt versions prior to Qt 6.0, not at all.
\sa qCompress()
*/
#ifndef QT_NO_COMPRESS
/*! \relates QByteArray
\overload
Uncompresses the first \a nbytes of \a data and returns a new byte
array with the uncompressed data.
*/
QByteArray qUncompress(const uchar* data, qsizetype nbytes)
{
if (!data)
return dataIsNull(ZLibOp::Decompression);
if (nbytes < 0)
return lengthIsNegative(ZLibOp::Decompression);
constexpr qsizetype HeaderSize = sizeof(CompressSizeHint_t);
if (nbytes < HeaderSize)
return invalidCompressedData();
const auto expectedSize = qFromBigEndian<CompressSizeHint_t>(data);
if (nbytes == HeaderSize) {
if (expectedSize != 0)
return invalidCompressedData();
return QByteArray();
}
constexpr auto MaxDecompressedSize = size_t(QByteArray::maxSize());
if constexpr (MaxDecompressedSize < std::numeric_limits<CompressSizeHint_t>::max()) {
if (expectedSize > MaxDecompressedSize)
return tooMuchData(ZLibOp::Decompression);
}
// expectedSize may be truncated, so always use at least nbytes
// (larger by at most 1%, according to zlib docs)
qsizetype capacity = std::max(qsizetype(expectedSize), // cannot overflow!
nbytes);
QArrayDataPointer<char> d(capacity);
return xxflate(ZLibOp::Decompression, std::move(d), {data + HeaderSize, nbytes - HeaderSize},
[] (z_stream *zs) { return inflateInit(zs); },
[] (z_stream *zs, size_t) { return inflate(zs, Z_NO_FLUSH); },
[] (z_stream *zs) { inflateEnd(zs); });
}
#endif
/*!
\class QByteArray
\inmodule QtCore
\brief The QByteArray class provides an array of bytes.
\ingroup tools
\ingroup shared
\ingroup string-processing
\reentrant
\compares strong
\compareswith strong {const char *}
\endcompareswith
\compareswith strong QChar char16_t QString QStringView QLatin1StringView \
QUtf8StringView
When comparing with string types, the content is interpreted as UTF-8.
\endcompareswith
QByteArray can be used to store both raw bytes (including '\\0's)
and traditional 8-bit '\\0'-terminated strings. Using QByteArray
is much more convenient than using \c{const char *}. Behind the
scenes, it always ensures that the data is followed by a '\\0'
terminator, and uses \l{implicit sharing} (copy-on-write) to
reduce memory usage and avoid needless copying of data.
In addition to QByteArray, Qt also provides the QString class to store
string data. For most purposes, QString is the class you want to use. It
understands its content as Unicode text (encoded using UTF-16) where
QByteArray aims to avoid assumptions about the encoding or semantics of the
bytes it stores (aside from a few legacy cases where it uses ASCII).
Furthermore, QString is used throughout in the Qt API. The two main cases
where QByteArray is appropriate are when you need to store raw binary data,
and when memory conservation is critical (e.g., with Qt for Embedded Linux).
One way to initialize a QByteArray is simply to pass a \c{const
char *} to its constructor. For example, the following code
creates a byte array of size 5 containing the data "Hello":
\snippet code/src_corelib_text_qbytearray.cpp 0
Although the size() is 5, the byte array also maintains an extra '\\0' byte
at the end so that if a function is used that asks for a pointer to the
underlying data (e.g. a call to data()), the data pointed to is guaranteed
to be '\\0'-terminated.
QByteArray makes a deep copy of the \c{const char *} data, so you can modify
it later without experiencing side effects. (If, for example for performance
reasons, you don't want to take a deep copy of the data, use
QByteArray::fromRawData() instead.)
Another approach is to set the size of the array using resize() and to
initialize the data byte by byte. QByteArray uses 0-based indexes, just like
C++ arrays. To access the byte at a particular index position, you can use
operator[](). On non-const byte arrays, operator[]() returns a reference to
a byte that can be used on the left side of an assignment. For example:
\snippet code/src_corelib_text_qbytearray.cpp 1
For read-only access, an alternative syntax is to use at():
\snippet code/src_corelib_text_qbytearray.cpp 2
at() can be faster than operator[](), because it never causes a
\l{deep copy} to occur.
To extract many bytes at a time, use first(), last(), or sliced().
A QByteArray can embed '\\0' bytes. The size() function always
returns the size of the whole array, including embedded '\\0'
bytes, but excluding the terminating '\\0' added by QByteArray.
For example:
\snippet code/src_corelib_text_qbytearray.cpp 48
If you want to obtain the length of the data up to and excluding the first
'\\0' byte, call qstrlen() on the byte array.
After a call to resize(), newly allocated bytes have undefined
values. To set all the bytes to a particular value, call fill().
To obtain a pointer to the actual bytes, call data() or constData(). These
functions return a pointer to the beginning of the data. The pointer is
guaranteed to remain valid until a non-const function is called on the
QByteArray. It is also guaranteed that the data ends with a '\\0' byte
unless the QByteArray was created from \l{fromRawData()}{raw data}. This
'\\0' byte is automatically provided by QByteArray and is not counted in
size().
QByteArray provides the following basic functions for modifying
the byte data: append(), prepend(), insert(), replace(), and
remove(). For example:
\snippet code/src_corelib_text_qbytearray.cpp 3
In the above example the replace() function's first two arguments are the
position from which to start replacing and the number of bytes that
should be replaced.
When data-modifying functions increase the size of the array,
they may lead to reallocation of memory for the QByteArray object. When
this happens, QByteArray expands by more than it immediately needs so as
to have space for further expansion without reallocation until the size
of the array has greatly increased.
The insert(), remove() and, when replacing a sub-array with one of
different size, replace() functions can be slow (\l{linear time}) for
large arrays, because they require moving many bytes in the array by
at least one position in memory.
If you are building a QByteArray gradually and know in advance
approximately how many bytes the QByteArray will contain, you
can call reserve(), asking QByteArray to preallocate a certain amount
of memory. You can also call capacity() to find out how much
memory the QByteArray actually has allocated.
Note that using non-const operators and functions can cause
QByteArray to do a deep copy of the data, due to \l{implicit sharing}.
QByteArray provides \l{STL-style iterators} (QByteArray::const_iterator and
QByteArray::iterator). In practice, iterators are handy when working with
generic algorithms provided by the C++ standard library.
\note Iterators and references to individual QByteArray elements are subject
to stability issues. They are often invalidated when a QByteArray-modifying
operation (e.g. insert() or remove()) is called. When stability and
iterator-like functionality is required, you should use indexes instead of
iterators as they are not tied to QByteArray's internal state and thus do
not get invalidated.
\note Iterators over a QByteArray, and references to individual bytes
within one, cannot be relied on to remain valid when any non-const method
of the QByteArray is called. Accessing such an iterator or reference after
the call to a non-const method leads to undefined behavior. When stability
for iterator-like functionality is required, you should use indexes instead
of iterators as they are not tied to QByteArray's internal state and thus do
not get invalidated.
If you want to find all occurrences of a particular byte or sequence of
bytes in a QByteArray, use indexOf() or lastIndexOf(). The former searches
forward starting from a given index position, the latter searches
backward. Both return the index position of the byte sequence if they find
it; otherwise, they return -1. For example, here's a typical loop that finds
all occurrences of a particular string:
\snippet code/src_corelib_text_qbytearray.cpp 4
If you simply want to check whether a QByteArray contains a particular byte
sequence, use contains(). If you want to find out how many times a
particular byte sequence occurs in the byte array, use count(). If you want
to replace all occurrences of a particular value with another, use one of
the two-parameter replace() overloads.
\l{QByteArray}s can be compared using overloaded operators such as
operator<(), operator<=(), operator==(), operator>=(), and so on. The
comparison is based exclusively on the numeric values of the bytes and is
very fast, but is not what a human would
expect. QString::localeAwareCompare() is a better choice for sorting
user-interface strings.
For historical reasons, QByteArray distinguishes between a null
byte array and an empty byte array. A \e null byte array is a
byte array that is initialized using QByteArray's default
constructor or by passing (const char *)0 to the constructor. An
\e empty byte array is any byte array with size 0. A null byte
array is always empty, but an empty byte array isn't necessarily
null:
\snippet code/src_corelib_text_qbytearray.cpp 5
All functions except isNull() treat null byte arrays the same as empty byte
arrays. For example, data() returns a valid pointer (\e not nullptr) to a
'\\0' byte for a null byte array and QByteArray() compares equal to
QByteArray(""). We recommend that you always use isEmpty() and avoid
isNull().
\section1 Maximum size and out-of-memory conditions
The maximum size of QByteArray depends on the architecture. Most 64-bit
systems can allocate more than 2 GB of memory, with a typical limit
of 2^63 bytes. The actual value also depends on the overhead required for
managing the data block. As a result, you can expect the maximum size
of 2 GB minus overhead on 32-bit platforms, and 2^63 bytes minus overhead
on 64-bit platforms. The number of elements that can be stored in a
QByteArray is this maximum size.
When memory allocation fails, QByteArray throws a \c std::bad_alloc
exception if the application is being compiled with exception support.
Out of memory conditions in Qt containers are the only case where Qt
will throw exceptions. If exceptions are disabled, then running out of
memory is undefined behavior.
Note that the operating system may impose further limits on applications
holding a lot of allocated memory, especially large, contiguous blocks.
Such considerations, the configuration of such behavior or any mitigation
are outside the scope of the QByteArray API.
\section1 C locale and ASCII functions
QByteArray generally handles data as bytes, without presuming any semantics;
where it does presume semantics, it uses the C locale and ASCII encoding.
Standard Unicode encodings are supported by QString, other encodings may be
supported using QStringEncoder and QStringDecoder to convert to Unicode. For
locale-specific interpretation of text, use QLocale or QString.
\section2 C Strings
Traditional C strings, also known as '\\0'-terminated strings, are sequences
of bytes, specified by a start-point and implicitly including each byte up
to, but not including, the first '\\0' byte thereafter. Methods that accept
such a pointer, without a length, will interpret it as this sequence of
bytes. Such a sequence, by construction, cannot contain a '\\0' byte.
Other overloads accept a start-pointer and a byte-count; these use the given
number of bytes, following the start address, regardless of whether any of
them happen to be '\\0' bytes. In some cases, where there is no overload
taking only a pointer, passing a length of -1 will cause the method to use
the offset of the first '\\0' byte after the pointer as the length; a length
of -1 should only be passed if the method explicitly says it does this (in
which case it is typically a default argument).
\section2 Spacing Characters
A frequent requirement is to remove spacing characters from a byte array
(\c{'\n'}, \c{'\t'}, \c{' '}, etc.). If you want to remove spacing from both
ends of a QByteArray, use trimmed(). If you want to also replace each run of
spacing characters with a single space character within the byte array, use
simplified(). Only ASCII spacing characters are recognized for these
purposes.
\section2 Number-String Conversions
Functions that perform conversions between numeric data types and string
representations are performed in the C locale, regardless of the user's
locale settings. Use QLocale to perform locale-aware conversions between
numbers and strings.
\section2 Character Case
In QByteArray, the notion of uppercase and lowercase and of case-independent
comparison is limited to ASCII. Non-ASCII characters are treated as
caseless, since their case depends on encoding. This affects functions that
support a case insensitive option or that change the case of their
arguments. Functions that this affects include compare(), isLower(),
isUpper(), toLower() and toUpper().
This issue does not apply to \l{QString}s since they represent characters
using Unicode.
\sa QByteArrayView, QString, QBitArray
*/
/*!
\enum QByteArray::Base64Option
\since 5.2
This enum contains the options available for encoding and decoding Base64.
Base64 is defined by \l{RFC 4648}, with the following options:
\value Base64Encoding (default) The regular Base64 alphabet, called simply "base64"
\value Base64UrlEncoding An alternate alphabet, called "base64url", which replaces two
characters in the alphabet to be more friendly to URLs.
\value KeepTrailingEquals (default) Keeps the trailing padding equal signs at the end
of the encoded data, so the data is always a size multiple of
four.
\value OmitTrailingEquals Omits adding the padding equal signs at the end of the encoded
data.
\value IgnoreBase64DecodingErrors When decoding Base64-encoded data, ignores errors
in the input; invalid characters are simply skipped.
This enum value has been added in Qt 5.15.
\value AbortOnBase64DecodingErrors When decoding Base64-encoded data, stops at the first
decoding error.
This enum value has been added in Qt 5.15.
QByteArray::fromBase64Encoding() and QByteArray::fromBase64()
ignore the KeepTrailingEquals and OmitTrailingEquals options. If
the IgnoreBase64DecodingErrors option is specified, they will not
flag errors in case trailing equal signs are missing or if there
are too many of them. If instead the AbortOnBase64DecodingErrors is
specified, then the input must either have no padding or have the
correct amount of equal signs.
*/
/*! \fn QByteArray::iterator QByteArray::begin()
Returns an \l{STL-style iterators}{STL-style iterator} pointing to the first
byte in the byte-array.
//! [iterator-invalidation-func-desc]
\warning The returned iterator is invalidated on detachment or when the
QByteArray is modified.
//! [iterator-invalidation-func-desc]
\sa constBegin(), end()
*/
/*! \fn QByteArray::const_iterator QByteArray::begin() const
\overload begin()
*/
/*! \fn QByteArray::const_iterator QByteArray::cbegin() const
\since 5.0
Returns a const \l{STL-style iterators}{STL-style iterator} pointing to the
first byte in the byte-array.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa begin(), cend()
*/
/*! \fn QByteArray::const_iterator QByteArray::constBegin() const
Returns a const \l{STL-style iterators}{STL-style iterator} pointing to the
first byte in the byte-array.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa begin(), constEnd()
*/
/*! \fn QByteArray::iterator QByteArray::end()
Returns an \l{STL-style iterators}{STL-style iterator} pointing just after
the last byte in the byte-array.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa begin(), constEnd()
*/
/*! \fn QByteArray::const_iterator QByteArray::end() const
\overload end()
*/
/*! \fn QByteArray::const_iterator QByteArray::cend() const
\since 5.0
Returns a const \l{STL-style iterators}{STL-style iterator} pointing just
after the last byte in the byte-array.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa cbegin(), end()
*/
/*! \fn QByteArray::const_iterator QByteArray::constEnd() const
Returns a const \l{STL-style iterators}{STL-style iterator} pointing just
after the last byte in the byte-array.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa constBegin(), end()
*/
/*! \fn QByteArray::reverse_iterator QByteArray::rbegin()
\since 5.6
Returns a \l{STL-style iterators}{STL-style} reverse iterator pointing to
the first byte in the byte-array, in reverse order.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa begin(), crbegin(), rend()
*/
/*! \fn QByteArray::const_reverse_iterator QByteArray::rbegin() const
\since 5.6
\overload
*/
/*! \fn QByteArray::const_reverse_iterator QByteArray::crbegin() const
\since 5.6
Returns a const \l{STL-style iterators}{STL-style} reverse iterator pointing
to the first byte in the byte-array, in reverse order.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa begin(), rbegin(), rend()
*/
/*! \fn QByteArray::reverse_iterator QByteArray::rend()
\since 5.6
Returns a \l{STL-style iterators}{STL-style} reverse iterator pointing just
after the last byte in the byte-array, in reverse order.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa end(), crend(), rbegin()
*/
/*! \fn QByteArray::const_reverse_iterator QByteArray::rend() const
\since 5.6
\overload
*/
/*! \fn QByteArray::const_reverse_iterator QByteArray::crend() const
\since 5.6
Returns a const \l{STL-style iterators}{STL-style} reverse iterator pointing
just after the last byte in the byte-array, in reverse order.
\include qbytearray.cpp iterator-invalidation-func-desc
\sa end(), rend(), rbegin()
*/
/*! \fn void QByteArray::push_back(const QByteArray &other)
This function is provided for STL compatibility. It is equivalent
to append(\a other).
*/
/*! \fn void QByteArray::push_back(QByteArrayView str)
\since 6.0
\overload
Same as append(\a str).
*/
/*! \fn void QByteArray::push_back(const char *str)
\overload
Same as append(\a str).
*/
/*! \fn void QByteArray::push_back(char ch)
\overload
Same as append(\a ch).
*/
/*! \fn void QByteArray::push_front(const QByteArray &other)
This function is provided for STL compatibility. It is equivalent
to prepend(\a other).
*/
/*! \fn void QByteArray::push_front(QByteArrayView str)
\since 6.0
\overload
Same as prepend(\a str).
*/
/*! \fn void QByteArray::push_front(const char *str)
\overload
Same as prepend(\a str).
*/
/*! \fn void QByteArray::push_front(char ch)
\overload
Same as prepend(\a ch).
*/
/*! \fn void QByteArray::shrink_to_fit()
\since 5.10
This function is provided for STL compatibility. It is equivalent to
squeeze().
*/
/*!
\since 6.1
Removes from the byte array the characters in the half-open range
[ \a first , \a last ). Returns an iterator to the character
referred to by \a last before the erase.
*/
QByteArray::iterator QByteArray::erase(QByteArray::const_iterator first, QByteArray::const_iterator last)
{
const auto start = std::distance(cbegin(), first);
const auto len = std::distance(first, last);
remove(start, len);
return begin() + start;
}
/*!
\fn QByteArray::iterator QByteArray::erase(QByteArray::const_iterator it)
\overload
\since 6.5
Removes the character denoted by \c it from the byte array.
Returns an iterator to the character immediately after the
erased character.
\code
QByteArray ba = "abcdefg";
auto it = ba.erase(ba.cbegin()); // ba is now "bcdefg" and it points to "b"
\endcode
*/
/*! \fn QByteArray::QByteArray(const QByteArray &other)
Constructs a copy of \a other.
This operation takes \l{constant time}, because QByteArray is
\l{implicitly shared}. This makes returning a QByteArray from a
function very fast. If a shared instance is modified, it will be
copied (copy-on-write), taking \l{linear time}.
\sa operator=()
*/
/*!
\fn QByteArray::QByteArray(QByteArray &&other)
Move-constructs a QByteArray instance, making it point at the same
object that \a other was pointing to.
\since 5.2
*/
/*! \fn QByteArray::QByteArray(QByteArrayDataPtr dd)
\internal
Constructs a byte array pointing to the same data as \a dd.
*/
/*! \fn QByteArray::~QByteArray()
Destroys the byte array.
*/
/*!
Assigns \a other to this byte array and returns a reference to
this byte array.
*/
QByteArray &QByteArray::operator=(const QByteArray & other) noexcept
{
d = other.d;
return *this;
}
/*!
\overload
Assigns \a str to this byte array.
\a str is assumed to point to a null-terminated string, and its length is
determined dynamically.
*/
QByteArray &QByteArray::operator=(const char *str)
{
if (!str) {
d.clear();
} else if (!*str) {
d = DataPointer::fromRawData(&_empty, 0);
} else {
assign(str);
}
return *this;
}
/*!
\fn QByteArray &QByteArray::operator=(QByteArray &&other)
Move-assigns \a other to this QByteArray instance.
\since 5.2
*/
/*! \fn void QByteArray::swap(QByteArray &other)
\since 4.8
\memberswap{byte array}
*/
/*! \fn qsizetype QByteArray::size() const
Returns the number of bytes in this byte array.
The last byte in the byte array is at position size() - 1. In addition,
QByteArray ensures that the byte at position size() is always '\\0', so that
you can use the return value of data() and constData() as arguments to
functions that expect '\\0'-terminated strings. If the QByteArray object was
created from a \l{fromRawData()}{raw data} that didn't include the trailing
'\\0'-termination byte, then QByteArray doesn't add it automatically unless a
\l{deep copy} is created.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 6
\sa isEmpty(), resize()
*/
/*! \fn qsizetype QByteArray::max_size() const
\fn qsizetype QByteArray::maxSize()
\since 6.8
It returns the maximum number of elements that the byte array can
theoretically hold. In practice, the number can be much smaller,
limited by the amount of memory available to the system.
*/
/*! \fn bool QByteArray::isEmpty() const
Returns \c true if the byte array has size 0; otherwise returns \c false.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 7
\sa size()
*/
/*! \fn qsizetype QByteArray::capacity() const
Returns the maximum number of bytes that can be stored in the
byte array without forcing a reallocation.
The sole purpose of this function is to provide a means of fine
tuning QByteArray's memory usage. In general, you will rarely
ever need to call this function. If you want to know how many
bytes are in the byte array, call size().
\note a statically allocated byte array will report a capacity of 0,
even if it's not empty.
\note The free space position in the allocated memory block is undefined. In
other words, one should not assume that the free memory is always located
after the initialized elements.
\sa reserve(), squeeze()
*/
/*! \fn void QByteArray::reserve(qsizetype size)
Attempts to allocate memory for at least \a size bytes.
If you know in advance how large the byte array will be, you can call
this function, and if you call resize() often you are likely to
get better performance.
If in doubt about how much space shall be needed, it is usually better to
use an upper bound as \a size, or a high estimate of the most likely size,
if a strict upper bound would be much bigger than this. If \a size is an
underestimate, the array will grow as needed once the reserved size is
exceeded, which may lead to a larger allocation than your best overestimate
would have and will slow the operation that triggers it.
\warning reserve() reserves memory but does not change the size of the byte
array. Accessing data beyond the end of the byte array is undefined
behavior. If you need to access memory beyond the current end of the array,
use resize().
The sole purpose of this function is to provide a means of fine
tuning QByteArray's memory usage. In general, you will rarely
ever need to call this function.
\sa squeeze(), capacity()
*/
/*! \fn void QByteArray::squeeze()
Releases any memory not required to store the array's data.
The sole purpose of this function is to provide a means of fine
tuning QByteArray's memory usage. In general, you will rarely
ever need to call this function.
\sa reserve(), capacity()
*/
/*! \fn QByteArray::operator const char *() const
\fn QByteArray::operator const void *() const
\note Use constData() instead in new code.
Returns a pointer to the data stored in the byte array. The
pointer can be used to access the bytes that compose the array.
The data is '\\0'-terminated.
//! [pointer-invalidation-desc]
The pointer remains valid as long as no detach happens and the QByteArray
is not modified.
//! [pointer-invalidation-desc]
This operator is mostly useful to pass a byte array to a function
that accepts a \c{const char *}.
You can disable this operator by defining \c
QT_NO_CAST_FROM_BYTEARRAY when you compile your applications.
Note: A QByteArray can store any byte values including '\\0's,
but most functions that take \c{char *} arguments assume that the
data ends at the first '\\0' they encounter.
\sa constData()
*/
/*!
\macro QT_NO_CAST_FROM_BYTEARRAY
\relates QByteArray
Disables automatic conversions from QByteArray to
const char * or const void *.
\sa QT_NO_CAST_TO_ASCII, QT_NO_CAST_FROM_ASCII
*/
/*! \fn char *QByteArray::data()
Returns a pointer to the data stored in the byte array. The pointer can be
used to access and modify the bytes that compose the array. The data is
'\\0'-terminated, i.e. the number of bytes you can access following the
returned pointer is size() + 1, including the '\\0' terminator.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 8
\include qbytearray.cpp pointer-invalidation-desc
For read-only access, constData() is faster because it never
causes a \l{deep copy} to occur.
This function is mostly useful to pass a byte array to a function
that accepts a \c{const char *}.
The following example makes a copy of the char* returned by
data(), but it will corrupt the heap and cause a crash because it
does not allocate a byte for the '\\0' at the end:
\snippet code/src_corelib_text_qbytearray.cpp 46
This one allocates the correct amount of space:
\snippet code/src_corelib_text_qbytearray.cpp 47
Note: A QByteArray can store any byte values including '\\0's,
but most functions that take \c{char *} arguments assume that the
data ends at the first '\\0' they encounter.
\sa constData(), operator[]()
*/
/*! \fn const char *QByteArray::data() const
\overload
*/
/*! \fn const char *QByteArray::constData() const
Returns a pointer to the const data stored in the byte array. The pointer
can be used to access the bytes that compose the array. The data is
'\\0'-terminated unless the QByteArray object was created from raw data.
\include qbytearray.cpp pointer-invalidation-desc
This function is mostly useful to pass a byte array to a function
that accepts a \c{const char *}.
Note: A QByteArray can store any byte values including '\\0's,
but most functions that take \c{char *} arguments assume that the
data ends at the first '\\0' they encounter.
\sa data(), operator[](), fromRawData()
*/
/*! \fn void QByteArray::detach()
\internal
*/
/*! \fn bool QByteArray::isDetached() const
\internal
*/
/*! \fn bool QByteArray::isSharedWith(const QByteArray &other) const
\internal
*/
/*! \fn char QByteArray::at(qsizetype i) const
Returns the byte at index position \a i in the byte array.
\a i must be a valid index position in the byte array (i.e., 0 <=
\a i < size()).
\sa operator[]()
*/
/*! \fn char &QByteArray::operator[](qsizetype i)
Returns the byte at index position \a i as a modifiable reference.
\a i must be a valid index position in the byte array (i.e., 0 <=
\a i < size()).
Example:
\snippet code/src_corelib_text_qbytearray.cpp 9
\sa at()
*/
/*! \fn char QByteArray::operator[](qsizetype i) const
\overload
Same as at(\a i).
*/
/*!
\fn char QByteArray::front() const
\since 5.10
Returns the first byte in the byte array.
Same as \c{at(0)}.
This function is provided for STL compatibility.
\warning Calling this function on an empty byte array constitutes
undefined behavior.
\sa back(), at(), operator[]()
*/
/*!
\fn char QByteArray::back() const
\since 5.10
Returns the last byte in the byte array.
Same as \c{at(size() - 1)}.
This function is provided for STL compatibility.
\warning Calling this function on an empty byte array constitutes
undefined behavior.
\sa front(), at(), operator[]()
*/
/*!
\fn char &QByteArray::front()
\since 5.10
Returns a reference to the first byte in the byte array.
Same as \c{operator[](0)}.
This function is provided for STL compatibility.
\warning Calling this function on an empty byte array constitutes
undefined behavior.
\sa back(), at(), operator[]()
*/
/*!
\fn char &QByteArray::back()
\since 5.10
Returns a reference to the last byte in the byte array.
Same as \c{operator[](size() - 1)}.
This function is provided for STL compatibility.
\warning Calling this function on an empty byte array constitutes
undefined behavior.
\sa front(), at(), operator[]()
*/
/*! \fn bool QByteArray::contains(QByteArrayView bv) const
\since 6.0
Returns \c true if this byte array contains an occurrence of the
sequence of bytes viewed by \a bv; otherwise returns \c false.
\sa indexOf(), count()
*/
/*! \fn bool QByteArray::contains(char ch) const
\overload
Returns \c true if the byte array contains the byte \a ch;
otherwise returns \c false.
*/
/*!
Truncates the byte array at index position \a pos.
If \a pos is beyond the end of the array, nothing happens.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 10
\sa chop(), resize(), first()
*/
void QByteArray::truncate(qsizetype pos)
{
if (pos < size())
resize(pos);
}
/*!
Removes \a n bytes from the end of the byte array.
If \a n is greater than size(), the result is an empty byte
array.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 11
\sa truncate(), resize(), first()
*/
void QByteArray::chop(qsizetype n)
{
if (n > 0)
resize(size() - n);
}
/*! \fn QByteArray &QByteArray::operator+=(const QByteArray &ba)
Appends the byte array \a ba onto the end of this byte array and
returns a reference to this byte array.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 12
Note: QByteArray is an \l{implicitly shared} class. Consequently,
if you append to an empty byte array, then the byte array will just
share the data held in \a ba. In this case, no copying of data is done,
taking \l{constant time}. If a shared instance is modified, it will
be copied (copy-on-write), taking \l{linear time}.
If the byte array being appended to is not empty, a deep copy of the
data is performed, taking \l{linear time}.
This operation typically does not suffer from allocation overhead,
because QByteArray preallocates extra space at the end of the data
so that it may grow without reallocating for each append operation.
\sa append(), prepend()
*/
/*! \fn QByteArray &QByteArray::operator+=(const char *str)
\overload
Appends the '\\0'-terminated string \a str onto the end of this byte array
and returns a reference to this byte array.
*/
/*! \fn QByteArray &QByteArray::operator+=(char ch)
\overload
Appends the byte \a ch onto the end of this byte array and returns a
reference to this byte array.
*/
/*! \fn qsizetype QByteArray::length() const
Same as size().
*/
/*! \fn bool QByteArray::isNull() const
Returns \c true if this byte array is null; otherwise returns \c false.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 13
Qt makes a distinction between null byte arrays and empty byte
arrays for historical reasons. For most applications, what
matters is whether or not a byte array contains any data,
and this can be determined using isEmpty().
\sa isEmpty()
*/
/*! \fn QByteArray::QByteArray()
Constructs an empty byte array.
\sa isEmpty()
*/
/*!
Constructs a byte array containing the first \a size bytes of
array \a data.
If \a data is 0, a null byte array is constructed.
If \a size is negative, \a data is assumed to point to a '\\0'-terminated
string and its length is determined dynamically.
QByteArray makes a deep copy of the string data.
\sa fromRawData()
*/
QByteArray::QByteArray(const char *data, qsizetype size)
{
if (!data) {
d = DataPointer();
} else {
if (size < 0)
size = qstrlen(data);
if (!size) {
d = DataPointer::fromRawData(&_empty, 0);
} else {
d = DataPointer(size, size);
Q_CHECK_PTR(d.data());
memcpy(d.data(), data, size);
d.data()[size] = '\0';
}
}
}
/*!
Constructs a byte array of size \a size with every byte set to \a ch.
\sa fill()
*/
QByteArray::QByteArray(qsizetype size, char ch)
{
if (size <= 0) {
d = DataPointer::fromRawData(&_empty, 0);
} else {
d = DataPointer(size, size);
Q_CHECK_PTR(d.data());
memset(d.data(), ch, size);
d.data()[size] = '\0';
}
}
/*!
Constructs a byte array of size \a size with uninitialized contents.
*/
QByteArray::QByteArray(qsizetype size, Qt::Initialization)
{
if (size <= 0) {
d = DataPointer::fromRawData(&_empty, 0);
} else {
d = DataPointer(size, size);
Q_CHECK_PTR(d.data());
d.data()[size] = '\0';
}
}
/*!
Sets the size of the byte array to \a size bytes.
If \a size is greater than the current size, the byte array is
extended to make it \a size bytes with the extra bytes added to
the end. The new bytes are uninitialized.
If \a size is less than the current size, bytes beyond position
\a size are excluded from the byte array.
\note While resize() will grow the capacity if needed, it never shrinks
capacity. To shed excess capacity, use squeeze().
\sa size(), truncate(), squeeze()
*/
void QByteArray::resize(qsizetype size)
{
if (size < 0)
size = 0;
const auto capacityAtEnd = capacity() - d.freeSpaceAtBegin();
if (d->needsDetach() || size > capacityAtEnd)
reallocData(size, QArrayData::Grow);
d.size = size;
if (d->allocatedCapacity())
d.data()[size] = 0;
}
/*!
\since 6.4
Sets the size of the byte array to \a newSize bytes.
If \a newSize is greater than the current size, the byte array is
extended to make it \a newSize bytes with the extra bytes added to
the end. The new bytes are initialized to \a c.
If \a newSize is less than the current size, bytes beyond position
\a newSize are excluded from the byte array.
\note While resize() will grow the capacity if needed, it never shrinks
capacity. To shed excess capacity, use squeeze().
\sa size(), truncate(), squeeze()
*/
void QByteArray::resize(qsizetype newSize, char c)
{
const auto old = d.size;
resize(newSize);
if (old < d.size)
memset(d.data() + old, c, d.size - old);
}
/*!
\since 6.8
Resizes the byte array to \a size bytes. If the size of the
byte array grows, the new bytes are uninitialized.
The behavior is identical to \c{resize(size)}.
\sa resize()
*/
void QByteArray::resizeForOverwrite(qsizetype size)
{
resize(size);
}
/*!
Sets every byte in the byte array to \a ch. If \a size is different from -1
(the default), the byte array is resized to size \a size beforehand.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 14
\sa resize()
*/
QByteArray &QByteArray::fill(char ch, qsizetype size)
{
resize(size < 0 ? this->size() : size);
if (this->size())
memset(d.data(), ch, this->size());
return *this;
}
void QByteArray::reallocData(qsizetype alloc, QArrayData::AllocationOption option)
{
if (!alloc) {
d = DataPointer::fromRawData(&_empty, 0);
return;
}
// don't use reallocate path when reducing capacity and there's free space
// at the beginning: might shift data pointer outside of allocated space
const bool cannotUseReallocate = d.freeSpaceAtBegin() > 0;
if (d->needsDetach() || cannotUseReallocate) {
DataPointer dd(alloc, qMin(alloc, d.size), option);
Q_CHECK_PTR(dd.data());
if (dd.size > 0)
::memcpy(dd.data(), d.data(), dd.size);
dd.data()[dd.size] = 0;
d = dd;
} else {
d->reallocate(alloc, option);
}
}
void QByteArray::reallocGrowData(qsizetype n)
{
if (!n) // expected to always allocate
n = 1;
if (d->needsDetach()) {
DataPointer dd(DataPointer::allocateGrow(d, n, QArrayData::GrowsAtEnd));
Q_CHECK_PTR(dd.data());
dd->copyAppend(d.data(), d.data() + d.size);
dd.data()[dd.size] = 0;
d = dd;
} else {
d->reallocate(d.constAllocatedCapacity() + n, QArrayData::Grow);
}
}
void QByteArray::expand(qsizetype i)
{
resize(qMax(i + 1, size()));
}
/*!
\fn QByteArray &QByteArray::nullTerminate()
\since 6.10
If this byte array's data isn't null-terminated, this method will make
a deep-copy of the data and make it null-terminated.
A QByteArray is null-terminated by default, however in some cases
(e.g. when using fromRawData()), the data doesn't necessarily end with
a \c {\0} character, which could be a problem when calling methods that
expect a null-terminated string (for example, C API).
\sa nullTerminated(), fromRawData(), setRawData()
*/
/*!
\fn QByteArray QByteArray::nullTerminated() const &
\since 6.10
Returns a copy of this byte array that is always null-terminated.
See nullTerminate().
\sa nullTerminate(), fromRawData(), setRawData()
*/
/*!
\fn QByteArray &QByteArray::prepend(QByteArrayView ba)
Prepends the byte array view \a ba to this byte array and returns a
reference to this byte array.
This operation is typically very fast (\l{constant time}), because
QByteArray preallocates extra space at the beginning of the data,
so it can grow without reallocating the entire array each time.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 15
This is the same as insert(0, \a ba).
\sa append(), insert()
*/
/*!
\fn QByteArray &QByteArray::prepend(const QByteArray &ba)
\overload
Prepends \a ba to this byte array.
*/
QByteArray &QByteArray::prepend(const QByteArray &ba)
{
if (size() == 0 && ba.size() > d.constAllocatedCapacity() && ba.d.isMutable())
return (*this = ba);
return prepend(QByteArrayView(ba));
}
/*!
\fn QByteArray &QByteArray::prepend(const char *str)
\overload
Prepends the '\\0'-terminated string \a str to this byte array.
*/
/*!
\fn QByteArray &QByteArray::prepend(const char *str, qsizetype len)
\overload
\since 4.6
Prepends \a len bytes starting at \a str to this byte array.
The bytes prepended may include '\\0' bytes.
*/
/*! \fn QByteArray &QByteArray::prepend(qsizetype count, char ch)
\overload
\since 5.7
Prepends \a count copies of byte \a ch to this byte array.
*/
/*!
\fn QByteArray &QByteArray::prepend(char ch)
\overload
Prepends the byte \a ch to this byte array.
*/
/*!
Appends the byte array \a ba onto the end of this byte array.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 16
This is the same as insert(size(), \a ba).
Note: QByteArray is an \l{implicitly shared} class. Consequently,
if you append to an empty byte array, then the byte array will just
share the data held in \a ba. In this case, no copying of data is done,
taking \l{constant time}. If a shared instance is modified, it will
be copied (copy-on-write), taking \l{linear time}.
If the byte array being appended to is not empty, a deep copy of the
data is performed, taking \l{linear time}.
The append() function is typically very fast (\l{constant time}),
because QByteArray preallocates extra space at the end of the data,
so it can grow without reallocating the entire array each time.
\sa operator+=(), prepend(), insert()
*/
QByteArray &QByteArray::append(const QByteArray &ba)
{
if (!ba.isNull()) {
if (isNull()) {
if (Q_UNLIKELY(!ba.d.isMutable()))
assign(ba); // fromRawData, so we do a deep copy
else
operator=(ba);
} else if (ba.size()) {
append(QByteArrayView(ba));
}
}
return *this;
}
/*!
\fn QByteArray &QByteArray::append(QByteArrayView data)
\overload
Appends \a data to this byte array.
*/
/*!
\fn QByteArray& QByteArray::append(const char *str)
\overload
Appends the '\\0'-terminated string \a str to this byte array.
*/
/*!
\fn QByteArray &QByteArray::append(const char *str, qsizetype len)
\overload
Appends the first \a len bytes starting at \a str to this byte array and
returns a reference to this byte array. The bytes appended may include '\\0'
bytes.
If \a len is negative, \a str will be assumed to be a '\\0'-terminated
string and the length to be copied will be determined automatically using
qstrlen().
If \a len is zero or \a str is null, nothing is appended to the byte
array. Ensure that \a len is \e not longer than \a str.
*/
/*! \fn QByteArray &QByteArray::append(qsizetype count, char ch)
\overload
\since 5.7
Appends \a count copies of byte \a ch to this byte array and returns a
reference to this byte array.
If \a count is negative or zero nothing is appended to the byte array.
*/
/*!
\overload
Appends the byte \a ch to this byte array.
*/
QByteArray& QByteArray::append(char ch)
{
d.detachAndGrow(QArrayData::GrowsAtEnd, 1, nullptr, nullptr);
d->copyAppend(1, ch);
d.data()[d.size] = '\0';
return *this;
}
/*!
\fn QByteArray &QByteArray::assign(QByteArrayView v)
\since 6.6
Replaces the contents of this byte array with a copy of \a v and returns a
reference to this byte array.
The size of this byte array will be equal to the size of \a v.
This function only allocates memory if the size of \a v exceeds the capacity
of this byte array or this byte array is shared.
*/
/*!
\fn QByteArray &QByteArray::assign(qsizetype n, char c)
\since 6.6
Replaces the contents of this byte array with \a n copies of \a c and
returns a reference to this byte array.
The size of this byte array will be equal to \a n, which has to be non-negative.
This function will only allocate memory if \a n exceeds the capacity of this
byte array or this byte array is shared.
\sa fill()
*/
/*!
\fn template <typename InputIterator, QByteArray::if_input_iterator<InputIterator>> QByteArray &QByteArray::assign(InputIterator first, InputIterator last)
\since 6.6
Replaces the contents of this byte array with a copy of the elements in the
iterator range [\a first, \a last) and returns a reference to this
byte array.
The size of this byte array will be equal to the number of elements in the
range [\a first, \a last).
This function will only allocate memory if the number of elements in the
range exceeds the capacity of this byte array or this byte array is shared.
\note The behavior is undefined if either argument is an iterator into *this or
[\a first, \a last) is not a valid range.
\constraints \c InputIterator meets the requirements of a
\l {https://en.cppreference.com/w/cpp/named_req/InputIterator} {LegacyInputIterator}.
*/
QByteArray &QByteArray::assign(QByteArrayView v)
{
const auto len = v.size();
if (len <= capacity() && isDetached()) {
const auto offset = d.freeSpaceAtBegin();
if (offset)
d.setBegin(d.begin() - offset);
std::memcpy(d.begin(), v.data(), len);
d.size = len;
d.data()[d.size] = '\0';
} else {
*this = v.toByteArray();
}
return *this;
}
/*!
Inserts \a data at index position \a i and returns a
reference to this byte array.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 17
\since 6.0
For large byte arrays, this operation can be slow (\l{linear time}),
because it requires moving all the bytes at indexes \a i and
above by at least one position further in memory.
//! [array-grow-at-insertion]
This array grows to accommodate the insertion. If \a i is beyond
the end of the array, the array is first extended with space characters
to reach this \a i.
//! [array-grow-at-insertion]
\sa append(), prepend(), replace(), remove()
*/
QByteArray &QByteArray::insert(qsizetype i, QByteArrayView data)
{
const char *str = data.data();
qsizetype size = data.size();
if (i < 0 || size <= 0)
return *this;
// handle this specially, as QArrayDataOps::insert() doesn't handle out of
// bounds positions
if (i >= d->size) {
// In case when data points into the range or is == *this, we need to
// defer a call to free() so that it comes after we copied the data from
// the old memory:
DataPointer detached{}; // construction is free
d.detachAndGrow(Data::GrowsAtEnd, (i - d.size) + size, &str, &detached);
Q_CHECK_PTR(d.data());
d->copyAppend(i - d->size, ' ');
d->copyAppend(str, str + size);
d.data()[d.size] = '\0';
return *this;
}
if (!d->needsDetach() && QtPrivate::q_points_into_range(str, d)) {
QVarLengthArray a(str, str + size);
return insert(i, a);
}
d->insert(i, str, size);
d.data()[d.size] = '\0';
return *this;
}
/*!
\fn QByteArray &QByteArray::insert(qsizetype i, const QByteArray &data)
Inserts \a data at index position \a i and returns a
reference to this byte array.
\include qbytearray.cpp array-grow-at-insertion
\sa append(), prepend(), replace(), remove()
*/
/*!
\fn QByteArray &QByteArray::insert(qsizetype i, const char *s)
Inserts \a s at index position \a i and returns a
reference to this byte array.
\include qbytearray.cpp array-grow-at-insertion
The function is equivalent to \c{insert(i, QByteArrayView(s))}
\sa append(), prepend(), replace(), remove()
*/
/*!
\fn QByteArray &QByteArray::insert(qsizetype i, const char *data, qsizetype len)
\overload
\since 4.6
Inserts \a len bytes, starting at \a data, at position \a i in the byte
array.
\include qbytearray.cpp array-grow-at-insertion
*/
/*!
\fn QByteArray &QByteArray::insert(qsizetype i, char ch)
\overload
Inserts byte \a ch at index position \a i in the byte array.
\include qbytearray.cpp array-grow-at-insertion
*/
/*! \fn QByteArray &QByteArray::insert(qsizetype i, qsizetype count, char ch)
\overload
\since 5.7
Inserts \a count copies of byte \a ch at index position \a i in the byte
array.
\include qbytearray.cpp array-grow-at-insertion
*/
QByteArray &QByteArray::insert(qsizetype i, qsizetype count, char ch)
{
if (i < 0 || count <= 0)
return *this;
if (i >= d->size) {
// handle this specially, as QArrayDataOps::insert() doesn't handle out of bounds positions
d.detachAndGrow(Data::GrowsAtEnd, (i - d.size) + count, nullptr, nullptr);
Q_CHECK_PTR(d.data());
d->copyAppend(i - d->size, ' ');
d->copyAppend(count, ch);
d.data()[d.size] = '\0';
return *this;
}
d->insert(i, count, ch);
d.data()[d.size] = '\0';
return *this;
}
/*!
Removes \a len bytes from the array, starting at index position \a
pos, and returns a reference to the array.
If \a pos is out of range, nothing happens. If \a pos is valid,
but \a pos + \a len is larger than the size of the array, the
array is truncated at position \a pos.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 18
Element removal will preserve the array's capacity and not reduce the
amount of allocated memory. To shed extra capacity and free as much memory
as possible, call squeeze() after the last change to the array's size.
\sa insert(), replace(), squeeze()
*/
QByteArray &QByteArray::remove(qsizetype pos, qsizetype len)
{
if (len <= 0 || pos < 0 || size_t(pos) >= size_t(size()))
return *this;
if (pos + len > d->size)
len = d->size - pos;
const auto toRemove_start = d.begin() + pos;
if (!d->isShared()) {
d->erase(toRemove_start, len);
d.data()[d.size] = '\0';
} else {
QByteArray copy{size() - len, Qt::Uninitialized};
copy.d->copyRanges({{d.begin(), toRemove_start},
{toRemove_start + len, d.end()}});
swap(copy);
}
return *this;
}
/*!
\fn QByteArray &QByteArray::removeAt(qsizetype pos)
\since 6.5
Removes the character at index \a pos. If \a pos is out of bounds
(i.e. \a pos >= size()) this function does nothing.
\sa remove()
*/
/*!
\fn QByteArray &QByteArray::removeFirst()
\since 6.5
Removes the first character in this byte array. If the byte array is empty,
this function does nothing.
\sa remove()
*/
/*!
\fn QByteArray &QByteArray::removeLast()
\since 6.5
Removes the last character in this byte array. If the byte array is empty,
this function does nothing.
\sa remove()
*/
/*!
\fn template <typename Predicate> QByteArray &QByteArray::removeIf(Predicate pred)
\since 6.1
Removes all bytes for which the predicate \a pred returns true
from the byte array. Returns a reference to the byte array.
\sa remove()
*/
/*!
Replaces \a len bytes from index position \a pos with the byte
array \a after, and returns a reference to this byte array.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 19
\sa insert(), remove()
*/
QByteArray &QByteArray::replace(qsizetype pos, qsizetype len, QByteArrayView after)
{
if (size_t(pos) > size_t(this->size()))
return *this;
if (len > this->size() - pos)
len = this->size() - pos;
if (QtPrivate::q_points_into_range(after.data(), d)) {
QVarLengthArray copy(after.data(), after.data() + after.size());
return replace(pos, len, QByteArrayView{copy});
}
if (len == after.size()) {
// same size: in-place replacement possible
if (len > 0) {
detach();
memcpy(d.data() + pos, after.data(), len*sizeof(char));
}
return *this;
} else {
// ### optimize me
remove(pos, len);
return insert(pos, after);
}
}
/*! \fn QByteArray &QByteArray::replace(qsizetype pos, qsizetype len, const char *after, qsizetype alen)
\overload
Replaces \a len bytes from index position \a pos with \a alen bytes starting
at position \a after. The bytes inserted may include '\\0' bytes.
\since 4.7
*/
/*!
\fn QByteArray &QByteArray::replace(const char *before, qsizetype bsize, const char *after, qsizetype asize)
\overload
Replaces every occurrence of the \a bsize bytes starting at \a before with
the \a asize bytes starting at \a after. Since the sizes of the strings are
given by \a bsize and \a asize, they may contain '\\0' bytes and do not need
to be '\\0'-terminated.
*/
/*!
\overload
\since 6.0
Replaces every occurrence of the byte array \a before with the
byte array \a after.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 20
*/
QByteArray &QByteArray::replace(QByteArrayView before, QByteArrayView after)
{
const char *b = before.data();
qsizetype bsize = before.size();
const char *a = after.data();
qsizetype asize = after.size();
if (isEmpty()) {
if (bsize)
return *this;
} else {
if (b == a && bsize == asize)
return *this;
}
if (asize == 0 && bsize == 0)
return *this;
if (bsize == 1 && asize == 1)
return replace(*b, *a); // use the fast char-char algorithm
// protect against before or after being part of this
std::string pinnedNeedle, pinnedReplacement;
if (QtPrivate::q_points_into_range(a, d)) {
pinnedReplacement.assign(a, a + asize);
a = pinnedReplacement.data();
}
if (QtPrivate::q_points_into_range(b, d)) {
pinnedNeedle.assign(b, b + bsize);
b = pinnedNeedle.data();
}
QByteArrayMatcher matcher(b, bsize);
qsizetype index = 0;
qsizetype len = size();
char *d = data(); // detaches
if (bsize == asize) {
if (bsize) {
while ((index = matcher.indexIn(*this, index)) != -1) {
memcpy(d + index, a, asize);
index += bsize;
}
}
} else if (asize < bsize) {
size_t to = 0;
size_t movestart = 0;
size_t num = 0;
while ((index = matcher.indexIn(*this, index)) != -1) {
if (num) {
qsizetype msize = index - movestart;
if (msize > 0) {
memmove(d + to, d + movestart, msize);
to += msize;
}
} else {
to = index;
}
if (asize > 0) {
memcpy(d + to, a, asize);
to += asize;
}
index += bsize;
movestart = index;
num++;
}
if (num) {
qsizetype msize = len - movestart;
if (msize > 0)
memmove(d + to, d + movestart, msize);
resize(len - num*(bsize-asize));
}
} else {
// the most complex case. We don't want to lose performance by doing repeated
// copies and reallocs of the data.
while (index != -1) {
size_t indices[4096];
size_t pos = 0;
while(pos < 4095) {
index = matcher.indexIn(*this, index);
if (index == -1)
break;
indices[pos++] = index;
index += bsize;
// avoid infinite loop
if (!bsize)
index++;
}
if (!pos)
break;
// we have a table of replacement positions, use them for fast replacing
qsizetype adjust = pos*(asize-bsize);
// index has to be adjusted in case we get back into the loop above.
if (index != -1)
index += adjust;
qsizetype newlen = len + adjust;
qsizetype moveend = len;
if (newlen > len) {
resize(newlen);
len = newlen;
}
d = this->d.data(); // data(), without the detach() check
while(pos) {
pos--;
qsizetype movestart = indices[pos] + bsize;
qsizetype insertstart = indices[pos] + pos*(asize-bsize);
qsizetype moveto = insertstart + asize;
memmove(d + moveto, d + movestart, (moveend - movestart));
if (asize)
memcpy(d + insertstart, a, asize);
moveend = movestart - bsize;
}
}
}
return *this;
}
/*!
\fn QByteArray &QByteArray::replace(char before, QByteArrayView after)
\overload
Replaces every occurrence of the byte \a before with the byte array \a
after.
*/
/*!
\overload
Replaces every occurrence of the byte \a before with the byte \a after.
*/
QByteArray &QByteArray::replace(char before, char after)
{
if (before != after) {
if (const auto pos = indexOf(before); pos >= 0) {
if (d.needsDetach()) {
QByteArray tmp(size(), Qt::Uninitialized);
auto dst = tmp.d.data();
dst = std::copy(d.data(), d.data() + pos, dst);
*dst++ = after;
std::replace_copy(d.data() + pos + 1, d.end(), dst, before, after);
swap(tmp);
} else {
// in-place
d.data()[pos] = after;
std::replace(d.data() + pos + 1, d.end(), before, after);
}
}
}
return *this;
}
/*!
Splits the byte array into subarrays wherever \a sep occurs, and
returns the list of those arrays. If \a sep does not match
anywhere in the byte array, split() returns a single-element list
containing this byte array.
*/
QList<QByteArray> QByteArray::split(char sep) const
{
QList<QByteArray> list;
qsizetype start = 0;
qsizetype end;
while ((end = indexOf(sep, start)) != -1) {
list.append(mid(start, end - start));
start = end + 1;
}
list.append(mid(start));
return list;
}
/*!
\since 4.5
Returns a copy of this byte array repeated the specified number of \a times.
If \a times is less than 1, an empty byte array is returned.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 49
*/
QByteArray QByteArray::repeated(qsizetype times) const
{
if (isEmpty())
return *this;
if (times <= 1) {
if (times == 1)
return *this;
return QByteArray();
}
const qsizetype resultSize = times * size();
QByteArray result;
result.reserve(resultSize);
if (result.capacity() != resultSize)
return QByteArray(); // not enough memory
memcpy(result.d.data(), data(), size());
qsizetype sizeSoFar = size();
char *end = result.d.data() + sizeSoFar;
const qsizetype halfResultSize = resultSize >> 1;
while (sizeSoFar <= halfResultSize) {
memcpy(end, result.d.data(), sizeSoFar);
end += sizeSoFar;
sizeSoFar <<= 1;
}
memcpy(end, result.d.data(), resultSize - sizeSoFar);
result.d.data()[resultSize] = '\0';
result.d.size = resultSize;
return result;
}
/*! \fn qsizetype QByteArray::indexOf(QByteArrayView bv, qsizetype from) const
\since 6.0
Returns the index position of the start of the first occurrence of the
sequence of bytes viewed by \a bv in this byte array, searching forward
from index position \a from. Returns -1 if no match is found.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 21
\sa lastIndexOf(), contains(), count()
*/
/*!
\fn qsizetype QByteArray::indexOf(char ch, qsizetype from) const
\overload
Returns the index position of the start of the first occurrence of the
byte \a ch in this byte array, searching forward from index position \a from.
Returns -1 if no match is found.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 22
\sa lastIndexOf(), contains()
*/
static qsizetype lastIndexOfHelper(const char *haystack, qsizetype l, const char *needle,
qsizetype ol, qsizetype from)
{
auto delta = l - ol;
if (from > l)
return -1;
if (from < 0 || from > delta)
from = delta;
if (from < 0)
return -1;
const char *end = haystack;
haystack += from;
const qregisteruint ol_minus_1 = ol - 1;
const char *n = needle + ol_minus_1;
const char *h = haystack + ol_minus_1;
qregisteruint hashNeedle = 0, hashHaystack = 0;
qsizetype idx;
for (idx = 0; idx < ol; ++idx) {
hashNeedle = ((hashNeedle<<1) + *(n-idx));
hashHaystack = ((hashHaystack<<1) + *(h-idx));
}
hashHaystack -= *haystack;
while (haystack >= end) {
hashHaystack += *haystack;
if (hashHaystack == hashNeedle && memcmp(needle, haystack, ol) == 0)
return haystack - end;
--haystack;
if (ol_minus_1 < sizeof(ol_minus_1) * CHAR_BIT)
hashHaystack -= qregisteruint(*(haystack + ol)) << ol_minus_1;
hashHaystack <<= 1;
}
return -1;
}
qsizetype QtPrivate::lastIndexOf(QByteArrayView haystack, qsizetype from, QByteArrayView needle) noexcept
{
if (haystack.isEmpty()) {
if (needle.isEmpty() && from == 0)
return 0;
return -1;
}
const auto ol = needle.size();
if (ol == 1)
return QtPrivate::lastIndexOf(haystack, from, needle.front());
return lastIndexOfHelper(haystack.data(), haystack.size(), needle.data(), ol, from);
}
/*! \fn qsizetype QByteArray::lastIndexOf(QByteArrayView bv, qsizetype from) const
\since 6.0
Returns the index position of the start of the last occurrence of the
sequence of bytes viewed by \a bv in this byte array, searching backward
from index position \a from.
\include qstring.qdocinc negative-index-start-search-from-end
Returns -1 if no match is found.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 23
\note When searching for a 0-length \a bv, the match at the end of
the data is excluded from the search by a negative \a from, even
though \c{-1} is normally thought of as searching from the end of
the byte array: the match at the end is \e after the last character, so
it is excluded. To include such a final empty match, either give a
positive value for \a from or omit the \a from parameter entirely.
\sa indexOf(), contains(), count()
*/
/*! \fn qsizetype QByteArray::lastIndexOf(QByteArrayView bv) const
\since 6.2
\overload
Returns the index position of the start of the last occurrence of the
sequence of bytes viewed by \a bv in this byte array, searching backward
from the end of the byte array. Returns -1 if no match is found.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 23
\sa indexOf(), contains(), count()
*/
/*!
\fn qsizetype QByteArray::lastIndexOf(char ch, qsizetype from) const
\overload
Returns the index position of the start of the last occurrence of byte \a ch
in this byte array, searching backward from index position \a from.
If \a from is -1 (the default), the search starts at the last byte
(at index size() - 1). Returns -1 if no match is found.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 24
\sa indexOf(), contains()
*/
static inline qsizetype countCharHelper(QByteArrayView haystack, char needle) noexcept
{
qsizetype num = 0;
for (char ch : haystack) {
if (ch == needle)
++num;
}
return num;
}
qsizetype QtPrivate::count(QByteArrayView haystack, QByteArrayView needle) noexcept
{
if (needle.size() == 0)
return haystack.size() + 1;
if (needle.size() == 1)
return countCharHelper(haystack, needle[0]);
qsizetype num = 0;
qsizetype i = -1;
if (haystack.size() > 500 && needle.size() > 5) {
QByteArrayMatcher matcher(needle);
while ((i = matcher.indexIn(haystack, i + 1)) != -1)
++num;
} else {
while ((i = haystack.indexOf(needle, i + 1)) != -1)
++num;
}
return num;
}
/*! \fn qsizetype QByteArray::count(QByteArrayView bv) const
\since 6.0
Returns the number of (potentially overlapping) occurrences of the
sequence of bytes viewed by \a bv in this byte array.
\sa contains(), indexOf()
*/
/*!
\overload
Returns the number of occurrences of byte \a ch in the byte array.
\sa contains(), indexOf()
*/
qsizetype QByteArray::count(char ch) const
{
return countCharHelper(*this, ch);
}
#if QT_DEPRECATED_SINCE(6, 4)
/*! \fn qsizetype QByteArray::count() const
\deprecated [6.4] Use size() or length() instead.
\overload
Same as size().
*/
#endif
/*!
\fn int QByteArray::compare(QByteArrayView bv, Qt::CaseSensitivity cs = Qt::CaseSensitive) const
\since 6.0
Returns an integer less than, equal to, or greater than zero depending on
whether this QByteArray sorts before, at the same position as, or after the
QByteArrayView \a bv. The comparison is performed according to case
sensitivity \a cs.
\sa operator==, {Character Case}
*/
bool QtPrivate::startsWith(QByteArrayView haystack, QByteArrayView needle) noexcept
{
if (haystack.size() < needle.size())
return false;
if (haystack.data() == needle.data() || needle.size() == 0)
return true;
return memcmp(haystack.data(), needle.data(), needle.size()) == 0;
}
/*! \fn bool QByteArray::startsWith(QByteArrayView bv) const
\since 6.0
Returns \c true if this byte array starts with the sequence of bytes
viewed by \a bv; otherwise returns \c false.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 25
\sa endsWith(), first()
*/
/*!
\fn bool QByteArray::startsWith(char ch) const
\overload
Returns \c true if this byte array starts with byte \a ch; otherwise returns
\c false.
*/
bool QtPrivate::endsWith(QByteArrayView haystack, QByteArrayView needle) noexcept
{
if (haystack.size() < needle.size())
return false;
if (haystack.end() == needle.end() || needle.size() == 0)
return true;
return memcmp(haystack.end() - needle.size(), needle.data(), needle.size()) == 0;
}
/*!
\fn bool QByteArray::endsWith(QByteArrayView bv) const
\since 6.0
Returns \c true if this byte array ends with the sequence of bytes
viewed by \a bv; otherwise returns \c false.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 26
\sa startsWith(), last()
*/
/*!
\fn bool QByteArray::endsWith(char ch) const
\overload
Returns \c true if this byte array ends with byte \a ch;
otherwise returns \c false.
*/
/*
Returns true if \a c is an uppercase ASCII letter.
*/
static constexpr inline bool isUpperCaseAscii(char c)
{
return c >= 'A' && c <= 'Z';
}
/*
Returns true if \a c is an lowercase ASCII letter.
*/
static constexpr inline bool isLowerCaseAscii(char c)
{
return c >= 'a' && c <= 'z';
}
/*!
Returns \c true if this byte array is uppercase, that is, if
it's identical to its toUpper() folding.
Note that this does \e not mean that the byte array only contains
uppercase letters; only that it contains no ASCII lowercase letters.
\since 5.12
\sa isLower(), toUpper()
*/
bool QByteArray::isUpper() const
{
return std::none_of(begin(), end(), isLowerCaseAscii);
}
/*!
Returns \c true if this byte array is lowercase, that is, if
it's identical to its toLower() folding.
Note that this does \e not mean that the byte array only contains
lowercase letters; only that it contains no ASCII uppercase letters.
\since 5.12
\sa isUpper(), toLower()
*/
bool QByteArray::isLower() const
{
return std::none_of(begin(), end(), isUpperCaseAscii);
}
/*!
\fn QByteArray::isValidUtf8() const
Returns \c true if this byte array contains valid UTF-8 encoded data,
or \c false otherwise.
\since 6.3
*/
/*!
\fn QByteArray QByteArray::left(qsizetype len) const &
\fn QByteArray QByteArray::left(qsizetype len) &&
Returns a byte array that contains the first \a len bytes of this byte
array.
If you know that \a len cannot be out of bounds, use first() instead in new
code, because it is faster.
The entire byte array is returned if \a len is greater than
size().
Returns an empty QByteArray if \a len is smaller than 0.
\sa first(), last(), startsWith(), chopped(), chop(), truncate()
*/
/*!
\fn QByteArray QByteArray::right(qsizetype len) const &
\fn QByteArray QByteArray::right(qsizetype len) &&
Returns a byte array that contains the last \a len bytes of this byte array.
If you know that \a len cannot be out of bounds, use last() instead in new
code, because it is faster.
The entire byte array is returned if \a len is greater than
size().
Returns an empty QByteArray if \a len is smaller than 0.
\sa endsWith(), last(), first(), sliced(), chopped(), chop(), truncate(), slice()
*/
/*!
\fn QByteArray QByteArray::mid(qsizetype pos, qsizetype len) const &
\fn QByteArray QByteArray::mid(qsizetype pos, qsizetype len) &&
Returns a byte array containing \a len bytes from this byte array,
starting at position \a pos.
If you know that \a pos and \a len cannot be out of bounds, use sliced()
instead in new code, because it is faster.
If \a len is -1 (the default), or \a pos + \a len >= size(),
returns a byte array containing all bytes starting at position \a
pos until the end of the byte array.
\sa first(), last(), sliced(), chopped(), chop(), truncate(), slice()
*/
QByteArray QByteArray::mid(qsizetype pos, qsizetype len) const &
{
qsizetype p = pos;
qsizetype l = len;
using namespace QtPrivate;
switch (QContainerImplHelper::mid(size(), &p, &l)) {
case QContainerImplHelper::Null:
return QByteArray();
case QContainerImplHelper::Empty:
{
return QByteArray(DataPointer::fromRawData(&_empty, 0));
}
case QContainerImplHelper::Full:
return *this;
case QContainerImplHelper::Subset:
return sliced(p, l);
}
Q_UNREACHABLE_RETURN(QByteArray());
}
QByteArray QByteArray::mid(qsizetype pos, qsizetype len) &&
{
qsizetype p = pos;
qsizetype l = len;
using namespace QtPrivate;
switch (QContainerImplHelper::mid(size(), &p, &l)) {
case QContainerImplHelper::Null:
return QByteArray();
case QContainerImplHelper::Empty:
resize(0); // keep capacity if we've reserve()d
[[fallthrough]];
case QContainerImplHelper::Full:
return std::move(*this);
case QContainerImplHelper::Subset:
return std::move(*this).sliced(p, l);
}
Q_UNREACHABLE_RETURN(QByteArray());
}
/*!
\fn QByteArray QByteArray::first(qsizetype n) const &
\fn QByteArray QByteArray::first(qsizetype n) &&
\since 6.0
Returns the first \a n bytes of the byte array.
\note The behavior is undefined when \a n < 0 or \a n > size().
Example:
\snippet code/src_corelib_text_qbytearray.cpp 27
\sa last(), sliced(), startsWith(), chopped(), chop(), truncate(), slice()
*/
/*!
\fn QByteArray QByteArray::last(qsizetype n) const &
\fn QByteArray QByteArray::last(qsizetype n) &&
\since 6.0
Returns the last \a n bytes of the byte array.
\note The behavior is undefined when \a n < 0 or \a n > size().
Example:
\snippet code/src_corelib_text_qbytearray.cpp 28
\sa first(), sliced(), endsWith(), chopped(), chop(), truncate(), slice()
*/
/*!
\fn QByteArray QByteArray::sliced(qsizetype pos, qsizetype n) const &
\fn QByteArray QByteArray::sliced(qsizetype pos, qsizetype n) &&
\since 6.0
Returns a byte array containing the \a n bytes of this object starting
at position \a pos.
\note The behavior is undefined when \a pos < 0, \a n < 0,
or \a pos + \a n > size().
Example:
\snippet code/src_corelib_text_qbytearray.cpp 29
\sa first(), last(), chopped(), chop(), truncate(), slice()
*/
QByteArray QByteArray::sliced_helper(QByteArray &a, qsizetype pos, qsizetype n)
{
if (n == 0)
return fromRawData(&_empty, 0);
DataPointer d = std::move(a.d).sliced(pos, n);
d.data()[n] = 0;
return QByteArray(std::move(d));
}
/*!
\fn QByteArray QByteArray::sliced(qsizetype pos) const &
\fn QByteArray QByteArray::sliced(qsizetype pos) &&
\since 6.0
\overload
Returns a byte array containing the bytes starting at position \a pos
in this object, and extending to the end of this object.
\note The behavior is undefined when \a pos < 0 or \a pos > size().
\sa first(), last(), chopped(), chop(), truncate(), slice()
*/
/*!
\fn QByteArray &QByteArray::slice(qsizetype pos, qsizetype n)
\since 6.8
Modifies this byte array to start at position \a pos, extending for \a n
bytes, and returns a reference to this byte array.
\note The behavior is undefined if \a pos < 0, \a n < 0,
or \a pos + \a n > size().
Example:
\snippet code/src_corelib_text_qbytearray.cpp 57
\sa sliced(), first(), last(), chopped(), chop(), truncate()
*/
/*!
\fn QByteArray &QByteArray::slice(qsizetype pos)
\since 6.8
\overload
Modifies this byte array to start at position \a pos, extending to its
end, and returns a reference to this byte array.
\note The behavior is undefined if \a pos < 0 or \a pos > size().
\sa sliced(), first(), last(), chopped(), chop(), truncate()
*/
/*!
\fn QByteArray QByteArray::chopped(qsizetype len) const &
\fn QByteArray QByteArray::chopped(qsizetype len) &&
\since 5.10
Returns a byte array that contains the leftmost size() - \a len bytes of
this byte array.
\note The behavior is undefined if \a len is negative or greater than size().
\sa endsWith(), first(), last(), sliced(), chop(), truncate(), slice()
*/
/*!
\fn QByteArray QByteArray::toLower() const
Returns a copy of the byte array in which each ASCII uppercase letter
converted to lowercase.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 30
\sa isLower(), toUpper(), {Character Case}
*/
template <typename T>
static QByteArray toCase_template(T &input, uchar (*lookup)(uchar))
{
// find the first bad character in input
const char *orig_begin = input.constBegin();
const char *firstBad = orig_begin;
const char *e = input.constEnd();
for ( ; firstBad != e ; ++firstBad) {
uchar ch = uchar(*firstBad);
uchar converted = lookup(ch);
if (ch != converted)
break;
}
if (firstBad == e)
return std::move(input);
// transform the rest
QByteArray s = std::move(input); // will copy if T is const QByteArray
char *b = s.begin(); // will detach if necessary
char *p = b + (firstBad - orig_begin);
e = b + s.size();
for ( ; p != e; ++p)
*p = char(lookup(uchar(*p)));
return s;
}
QByteArray QByteArray::toLower_helper(const QByteArray &a)
{
return toCase_template(a, asciiLower);
}
QByteArray QByteArray::toLower_helper(QByteArray &a)
{
return toCase_template(a, asciiLower);
}
/*!
\fn QByteArray QByteArray::toUpper() const
Returns a copy of the byte array in which each ASCII lowercase letter
converted to uppercase.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 31
\sa isUpper(), toLower(), {Character Case}
*/
QByteArray QByteArray::toUpper_helper(const QByteArray &a)
{
return toCase_template(a, asciiUpper);
}
QByteArray QByteArray::toUpper_helper(QByteArray &a)
{
return toCase_template(a, asciiUpper);
}
/*! \fn void QByteArray::clear()
Clears the contents of the byte array and makes it null.
\sa resize(), isNull()
*/
void QByteArray::clear()
{
d.clear();
}
#if !defined(QT_NO_DATASTREAM)
/*! \relates QByteArray
Writes byte array \a ba to the stream \a out and returns a reference
to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator<<(QDataStream &out, const QByteArray &ba)
{
if (ba.isNull() && out.version() >= 6) {
QDataStream::writeQSizeType(out, -1);
return out;
}
return out.writeBytes(ba.constData(), ba.size());
}
/*! \relates QByteArray
Reads a byte array into \a ba from the stream \a in and returns a
reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator>>(QDataStream &in, QByteArray &ba)
{
ba.clear();
qint64 size = QDataStream::readQSizeType(in);
qsizetype len = size;
if (size != len || size < -1) {
ba.clear();
in.setStatus(QDataStream::SizeLimitExceeded);
return in;
}
if (len == -1) { // null byte-array
ba = QByteArray();
return in;
}
constexpr qsizetype Step = 1024 * 1024;
qsizetype allocated = 0;
do {
qsizetype blockSize = qMin(Step, len - allocated);
ba.resize(allocated + blockSize);
if (in.readRawData(ba.data() + allocated, blockSize) != blockSize) {
ba.clear();
in.setStatus(QDataStream::ReadPastEnd);
return in;
}
allocated += blockSize;
} while (allocated < len);
return in;
}
#endif // QT_NO_DATASTREAM
/*! \fn bool QByteArray::operator==(const QByteArray &lhs, const QByteArray &rhs)
\overload
Returns \c true if byte array \a lhs is equal to byte array \a rhs;
otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator==(const QByteArray &lhs, const char * const &rhs)
\overload
Returns \c true if byte array \a lhs is equal to the '\\0'-terminated string
\a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator==(const char * const &lhs, const QByteArray &rhs)
\overload
Returns \c true if '\\0'-terminated string \a lhs is equal to byte array \a
rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator!=(const QByteArray &lhs, const QByteArray &rhs)
\overload
Returns \c true if byte array \a lhs is not equal to byte array \a rhs;
otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator!=(const QByteArray &lhs, const char * const &rhs)
\overload
Returns \c true if byte array \a lhs is not equal to the '\\0'-terminated
string \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator!=(const char * const &lhs, const QByteArray &rhs)
\overload
Returns \c true if '\\0'-terminated string \a lhs is not equal to byte array
\a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator<(const QByteArray &lhs, const QByteArray &rhs)
\overload
Returns \c true if byte array \a lhs is lexically less than byte array
\a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator<(const QByteArray &lhs, const char * const &rhs)
\overload
Returns \c true if byte array \a lhs is lexically less than the
'\\0'-terminated string \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator<(const char * const &lhs, const QByteArray &rhs)
\overload
Returns \c true if '\\0'-terminated string \a lhs is lexically less than byte
array \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator<=(const QByteArray &lhs, const QByteArray &rhs)
\overload
Returns \c true if byte array \a lhs is lexically less than or equal
to byte array \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator<=(const QByteArray &lhs, const char * const &rhs)
\overload
Returns \c true if byte array \a lhs is lexically less than or equal to the
'\\0'-terminated string \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator<=(const char * const &lhs, const QByteArray &rhs)
\overload
Returns \c true if '\\0'-terminated string \a lhs is lexically less than or
equal to byte array \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator>(const QByteArray &lhs, const QByteArray &rhs)
\overload
Returns \c true if byte array \a lhs is lexically greater than byte
array \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator>(const QByteArray &lhs, const char * const &rhs)
\overload
Returns \c true if byte array \a lhs is lexically greater than the
'\\0'-terminated string \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator>(const char * const &lhs, const QByteArray &rhs)
\overload
Returns \c true if '\\0'-terminated string \a lhs is lexically greater than
byte array \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator>=(const QByteArray &lhs, const QByteArray &rhs)
\overload
Returns \c true if byte array \a lhs is lexically greater than or
equal to byte array \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator>=(const QByteArray &lhs, const char * const &rhs)
\overload
Returns \c true if byte array \a lhs is lexically greater than or equal to
the '\\0'-terminated string \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn bool QByteArray::operator>=(const char * const &lhs, const QByteArray &rhs)
\overload
Returns \c true if '\\0'-terminated string \a lhs is lexically greater than
or equal to byte array \a rhs; otherwise returns \c false.
\sa QByteArray::compare()
*/
/*! \fn QByteArray operator+(const QByteArray &a1, const QByteArray &a2)
\relates QByteArray
Returns a byte array that is the result of concatenating byte
array \a a1 and byte array \a a2.
\sa QByteArray::operator+=()
*/
/*! \fn QByteArray operator+(const QByteArray &a1, const char *a2)
\relates QByteArray
\overload
Returns a byte array that is the result of concatenating byte array \a a1
and '\\0'-terminated string \a a2.
*/
/*! \fn QByteArray operator+(const QByteArray &a1, char a2)
\relates QByteArray
\overload
Returns a byte array that is the result of concatenating byte
array \a a1 and byte \a a2.
*/
/*! \fn QByteArray operator+(const char *a1, const QByteArray &a2)
\relates QByteArray
\overload
Returns a byte array that is the result of concatenating '\\0'-terminated
string \a a1 and byte array \a a2.
*/
/*! \fn QByteArray operator+(char a1, const QByteArray &a2)
\relates QByteArray
\overload
Returns a byte array that is the result of concatenating byte \a a1 and byte
array \a a2.
*/
/*! \fn QByteArray operator+(const QByteArray &lhs, QByteArrayView rhs)
\fn QByteArray operator+(QByteArrayView lhs, const QByteArray &rhs)
\overload
\since 6.9
\relates QByteArray
Returns a byte array that is the result of concatenating \a lhs and \a rhs.
\sa QByteArray::operator+=()
*/
/*!
\fn QByteArray QByteArray::simplified() const
Returns a copy of this byte array that has spacing characters removed from
the start and end, and in which each sequence of internal spacing characters
is replaced with a single space.
The spacing characters are those for which the standard C++ \c isspace()
function returns \c true in the C locale; these are the ASCII characters
tabulation '\\t', line feed '\\n', carriage return '\\r', vertical
tabulation '\\v', form feed '\\f', and space ' '.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 32
\sa trimmed(), QChar::SpecialCharacter, {Spacing Characters}
*/
QByteArray QByteArray::simplified_helper(const QByteArray &a)
{
return QStringAlgorithms<const QByteArray>::simplified_helper(a);
}
QByteArray QByteArray::simplified_helper(QByteArray &a)
{
return QStringAlgorithms<QByteArray>::simplified_helper(a);
}
/*!
\fn QByteArray QByteArray::trimmed() const
Returns a copy of this byte array with spacing characters removed from the
start and end.
The spacing characters are those for which the standard C++ \c isspace()
function returns \c true in the C locale; these are the ASCII characters
tabulation '\\t', line feed '\\n', carriage return '\\r', vertical
tabulation '\\v', form feed '\\f', and space ' '.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 33
Unlike simplified(), \l {QByteArray::trimmed()}{trimmed()} leaves internal
spacing unchanged.
\sa simplified(), QChar::SpecialCharacter, {Spacing Characters}
*/
QByteArray QByteArray::trimmed_helper(const QByteArray &a)
{
return QStringAlgorithms<const QByteArray>::trimmed_helper(a);
}
QByteArray QByteArray::trimmed_helper(QByteArray &a)
{
return QStringAlgorithms<QByteArray>::trimmed_helper(a);
}
QByteArrayView QtPrivate::trimmed(QByteArrayView view) noexcept
{
const auto [start, stop] = QStringAlgorithms<QByteArrayView>::trimmed_helper_positions(view);
return QByteArrayView(start, stop);
}
/*!
Returns a byte array of size \a width that contains this byte array padded
with the \a fill byte.
If \a truncate is false and the size() of the byte array is more
than \a width, then the returned byte array is a copy of this byte
array.
If \a truncate is true and the size() of the byte array is more
than \a width, then any bytes in a copy of the byte array
after position \a width are removed, and the copy is returned.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 34
\sa rightJustified()
*/
QByteArray QByteArray::leftJustified(qsizetype width, char fill, bool truncate) const
{
QByteArray result;
qsizetype len = size();
qsizetype padlen = width - len;
if (padlen > 0) {
result.resize(len+padlen);
if (len)
memcpy(result.d.data(), data(), len);
memset(result.d.data()+len, fill, padlen);
} else {
if (truncate)
result = left(width);
else
result = *this;
}
return result;
}
/*!
Returns a byte array of size \a width that contains the \a fill byte
followed by this byte array.
If \a truncate is false and the size of the byte array is more
than \a width, then the returned byte array is a copy of this byte
array.
If \a truncate is true and the size of the byte array is more
than \a width, then the resulting byte array is truncated at
position \a width.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 35
\sa leftJustified()
*/
QByteArray QByteArray::rightJustified(qsizetype width, char fill, bool truncate) const
{
QByteArray result;
qsizetype len = size();
qsizetype padlen = width - len;
if (padlen > 0) {
result.resize(len+padlen);
if (len)
memcpy(result.d.data()+padlen, data(), len);
memset(result.d.data(), fill, padlen);
} else {
if (truncate)
result = left(width);
else
result = *this;
}
return result;
}
auto QtPrivate::toSignedInteger(QByteArrayView data, int base) -> ParsedNumber<qlonglong>
{
#if defined(QT_CHECK_RANGE)
if (base != 0 && (base < 2 || base > 36)) {
qWarning("QByteArray::toIntegral: Invalid base %d", base);
base = 10;
}
#endif
if (data.isEmpty())
return {};
const QSimpleParsedNumber r = QLocaleData::bytearrayToLongLong(data, base);
if (r.ok())
return ParsedNumber(r.result);
return {};
}
auto QtPrivate::toUnsignedInteger(QByteArrayView data, int base) -> ParsedNumber<qulonglong>
{
#if defined(QT_CHECK_RANGE)
if (base != 0 && (base < 2 || base > 36)) {
qWarning("QByteArray::toIntegral: Invalid base %d", base);
base = 10;
}
#endif
if (data.isEmpty())
return {};
const QSimpleParsedNumber r = QLocaleData::bytearrayToUnsLongLong(data, base);
if (r.ok())
return ParsedNumber(r.result);
return {};
}
/*!
Returns the byte array converted to a \c {long long} using base \a base,
which is ten by default. Bases 0 and 2 through 36 are supported, using
letters for digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
qlonglong QByteArray::toLongLong(bool *ok, int base) const
{
return QtPrivate::toIntegral<qlonglong>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
Returns the byte array converted to an \c {unsigned long long} using base \a
base, which is ten by default. Bases 0 and 2 through 36 are supported, using
letters for digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
qulonglong QByteArray::toULongLong(bool *ok, int base) const
{
return QtPrivate::toIntegral<qulonglong>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
Returns the byte array converted to an \c int using base \a base, which is
ten by default. Bases 0 and 2 through 36 are supported, using letters for
digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\snippet code/src_corelib_text_qbytearray.cpp 36
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
int QByteArray::toInt(bool *ok, int base) const
{
return QtPrivate::toIntegral<int>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
Returns the byte array converted to an \c {unsigned int} using base \a base,
which is ten by default. Bases 0 and 2 through 36 are supported, using
letters for digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
uint QByteArray::toUInt(bool *ok, int base) const
{
return QtPrivate::toIntegral<uint>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
\since 4.1
Returns the byte array converted to a \c long int using base \a base, which
is ten by default. Bases 0 and 2 through 36 are supported, using letters for
digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\snippet code/src_corelib_text_qbytearray.cpp 37
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
long QByteArray::toLong(bool *ok, int base) const
{
return QtPrivate::toIntegral<long>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
\since 4.1
Returns the byte array converted to an \c {unsigned long int} using base \a
base, which is ten by default. Bases 0 and 2 through 36 are supported, using
letters for digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
ulong QByteArray::toULong(bool *ok, int base) const
{
return QtPrivate::toIntegral<ulong>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
Returns the byte array converted to a \c short using base \a base, which is
ten by default. Bases 0 and 2 through 36 are supported, using letters for
digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
short QByteArray::toShort(bool *ok, int base) const
{
return QtPrivate::toIntegral<short>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
Returns the byte array converted to an \c {unsigned short} using base \a
base, which is ten by default. Bases 0 and 2 through 36 are supported, using
letters for digits beyond 9; A is ten, B is eleven and so on.
If \a base is 0, the base is determined automatically using the following
rules: If the byte array begins with "0x", it is assumed to be hexadecimal
(base 16); otherwise, if it begins with "0b", it is assumed to be binary
(base 2); otherwise, if it begins with "0", it is assumed to be octal
(base 8); otherwise it is assumed to be decimal.
Returns 0 if the conversion fails.
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\note Support for the "0b" prefix was added in Qt 6.4.
\sa number()
*/
ushort QByteArray::toUShort(bool *ok, int base) const
{
return QtPrivate::toIntegral<ushort>(qToByteArrayViewIgnoringNull(*this), ok, base);
}
/*!
Returns the byte array converted to a \c double value.
Returns an infinity if the conversion overflows or 0.0 if the
conversion fails for other reasons (e.g. underflow).
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\snippet code/src_corelib_text_qbytearray.cpp 38
\warning The QByteArray content may only contain valid numerical characters
which includes the plus/minus sign, the character e used in scientific
notation, and the decimal point. Including the unit or additional characters
leads to a conversion error.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
This function ignores leading and trailing whitespace.
\sa number()
*/
double QByteArray::toDouble(bool *ok) const
{
return QByteArrayView(*this).toDouble(ok);
}
auto QtPrivate::toDouble(QByteArrayView a) noexcept -> ParsedNumber<double>
{
auto r = qt_asciiToDouble(a.data(), a.size(), WhitespacesAllowed);
if (r.ok())
return ParsedNumber{r.result};
else
return {};
}
/*!
Returns the byte array converted to a \c float value.
Returns an infinity if the conversion overflows or 0.0 if the
conversion fails for other reasons (e.g. underflow).
If \a ok is not \nullptr, failure is reported by setting *\a{ok}
to \c false, and success by setting *\a{ok} to \c true.
\snippet code/src_corelib_text_qbytearray.cpp 38float
\warning The QByteArray content may only contain valid numerical characters
which includes the plus/minus sign, the character e used in scientific
notation, and the decimal point. Including the unit or additional characters
leads to a conversion error.
\note The conversion of the number is performed in the default C locale,
regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
This function ignores leading and trailing whitespace.
\sa number()
*/
float QByteArray::toFloat(bool *ok) const
{
return QLocaleData::convertDoubleToFloat(toDouble(ok), ok);
}
auto QtPrivate::toFloat(QByteArrayView a) noexcept -> ParsedNumber<float>
{
if (const auto r = toDouble(a)) {
bool ok = true;
const auto f = QLocaleData::convertDoubleToFloat(*r, &ok);
if (ok)
return ParsedNumber(f);
}
return {};
}
/*!
\since 5.2
Returns a copy of the byte array, encoded using the options \a options.
\snippet code/src_corelib_text_qbytearray.cpp 39
The algorithm used to encode Base64-encoded data is defined in \l{RFC 4648}.
\sa fromBase64()
*/
QByteArray QByteArray::toBase64(Base64Options options) const
{
constexpr char alphabet_base64[] = "ABCDEFGH" "IJKLMNOP" "QRSTUVWX" "YZabcdef"
"ghijklmn" "opqrstuv" "wxyz0123" "456789+/";
constexpr char alphabet_base64url[] = "ABCDEFGH" "IJKLMNOP" "QRSTUVWX" "YZabcdef"
"ghijklmn" "opqrstuv" "wxyz0123" "456789-_";
const char *const alphabet = options & Base64UrlEncoding ? alphabet_base64url : alphabet_base64;
constexpr char padchar = '=';
qsizetype padlen = 0;
const qsizetype sz = size();
QByteArray tmp((sz + 2) / 3 * 4, Qt::Uninitialized);
qsizetype i = 0;
char *out = tmp.data();
while (i < sz) {
// encode 3 bytes at a time
int chunk = 0;
chunk |= int(uchar(data()[i++])) << 16;
if (i == sz) {
padlen = 2;
} else {
chunk |= int(uchar(data()[i++])) << 8;
if (i == sz)
padlen = 1;
else
chunk |= int(uchar(data()[i++]));
}
int j = (chunk & 0x00fc0000) >> 18;
int k = (chunk & 0x0003f000) >> 12;
int l = (chunk & 0x00000fc0) >> 6;
int m = (chunk & 0x0000003f);
*out++ = alphabet[j];
*out++ = alphabet[k];
if (padlen > 1) {
if ((options & OmitTrailingEquals) == 0)
*out++ = padchar;
} else {
*out++ = alphabet[l];
}
if (padlen > 0) {
if ((options & OmitTrailingEquals) == 0)
*out++ = padchar;
} else {
*out++ = alphabet[m];
}
}
Q_ASSERT((options & OmitTrailingEquals) || (out == tmp.size() + tmp.data()));
if (options & OmitTrailingEquals)
tmp.truncate(out - tmp.data());
return tmp;
}
/*!
\fn QByteArray &QByteArray::setNum(int n, int base)
Represent the whole number \a n as text.
Sets this byte array to a string representing \a n in base \a base (ten by
default) and returns a reference to this byte array. Bases 2 through 36 are
supported, using letters for digits beyond 9; A is ten, B is eleven and so
on.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 40
\note The format of the number is not localized; the default C locale is
used regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\sa number(), toInt()
*/
/*!
\fn QByteArray &QByteArray::setNum(uint n, int base)
\overload
\sa toUInt()
*/
/*!
\fn QByteArray &QByteArray::setNum(long n, int base)
\overload
\sa toLong()
*/
/*!
\fn QByteArray &QByteArray::setNum(ulong n, int base)
\overload
\sa toULong()
*/
/*!
\fn QByteArray &QByteArray::setNum(short n, int base)
\overload
\sa toShort()
*/
/*!
\fn QByteArray &QByteArray::setNum(ushort n, int base)
\overload
\sa toUShort()
*/
/*!
\overload
\sa toLongLong()
*/
QByteArray &QByteArray::setNum(qlonglong n, int base)
{
constexpr int buffsize = 66; // big enough for MAX_ULLONG in base 2
char buff[buffsize];
char *p;
if (n < 0) {
// Take care to avoid overflow on negating min value:
p = qulltoa2(buff + buffsize, qulonglong(-(1 + n)) + 1, base);
*--p = '-';
} else {
p = qulltoa2(buff + buffsize, qulonglong(n), base);
}
return assign(QByteArrayView{p, buff + buffsize});
}
/*!
\overload
\sa toULongLong()
*/
QByteArray &QByteArray::setNum(qulonglong n, int base)
{
constexpr int buffsize = 66; // big enough for MAX_ULLONG in base 2
char buff[buffsize];
char *p = qulltoa2(buff + buffsize, n, base);
return assign(QByteArrayView{p, buff + buffsize});
}
/*!
\overload
Represent the floating-point number \a n as text.
Sets this byte array to a string representing \a n, with a given \a format
and \a precision (with the same meanings as for \l {QString::number(double,
char, int)}), and returns a reference to this byte array.
\sa toDouble(), QLocale::FloatingPointPrecisionOption
*/
QByteArray &QByteArray::setNum(double n, char format, int precision)
{
return *this = QByteArray::number(n, format, precision);
}
/*!
\fn QByteArray &QByteArray::setNum(float n, char format, int precision)
\overload
Represent the floating-point number \a n as text.
Sets this byte array to a string representing \a n, with a given \a format
and \a precision (with the same meanings as for \l {QString::number(double,
char, int)}), and returns a reference to this byte array.
\sa toFloat()
*/
/*!
Returns a byte-array representing the whole number \a n as text.
Returns a byte array containing a string representing \a n, using the
specified \a base (ten by default). Bases 2 through 36 are supported, using
letters for digits beyond 9: A is ten, B is eleven and so on.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 41
\note The format of the number is not localized; the default C locale is
used regardless of the user's locale. Use QLocale to perform locale-aware
conversions between numbers and strings.
\sa setNum(), toInt()
*/
QByteArray QByteArray::number(int n, int base)
{
QByteArray s;
s.setNum(n, base);
return s;
}
/*!
\overload
\sa toUInt()
*/
QByteArray QByteArray::number(uint n, int base)
{
QByteArray s;
s.setNum(n, base);
return s;
}
/*!
\overload
\sa toLong()
*/
QByteArray QByteArray::number(long n, int base)
{
QByteArray s;
s.setNum(n, base);
return s;
}
/*!
\overload
\sa toULong()
*/
QByteArray QByteArray::number(ulong n, int base)
{
QByteArray s;
s.setNum(n, base);
return s;
}
/*!
\overload
\sa toLongLong()
*/
QByteArray QByteArray::number(qlonglong n, int base)
{
QByteArray s;
s.setNum(n, base);
return s;
}
/*!
\overload
\sa toULongLong()
*/
QByteArray QByteArray::number(qulonglong n, int base)
{
QByteArray s;
s.setNum(n, base);
return s;
}
/*!
\overload
Returns a byte-array representing the floating-point number \a n as text.
Returns a byte array containing a string representing \a n, with a given \a
format and \a precision, with the same meanings as for \l
{QString::number(double, char, int)}. For example:
\snippet code/src_corelib_text_qbytearray.cpp 42
\sa toDouble(), QLocale::FloatingPointPrecisionOption
*/
QByteArray QByteArray::number(double n, char format, int precision)
{
QLocaleData::DoubleForm form = QLocaleData::DFDecimal;
switch (QtMiscUtils::toAsciiLower(format)) {
case 'f':
form = QLocaleData::DFDecimal;
break;
case 'e':
form = QLocaleData::DFExponent;
break;
case 'g':
form = QLocaleData::DFSignificantDigits;
break;
default:
#if defined(QT_CHECK_RANGE)
qWarning("QByteArray::setNum: Invalid format char '%c'", format);
#endif
break;
}
return qdtoAscii(n, form, precision, isUpperCaseAscii(format));
}
/*!
\fn QByteArray QByteArray::fromRawData(const char *data, qsizetype size) constexpr
Constructs a QByteArray that uses the first \a size bytes of the
\a data array. The bytes are \e not copied. The QByteArray will
contain the \a data pointer. The caller guarantees that \a data
will not be deleted or modified as long as this QByteArray and any
copies of it exist that have not been modified. In other words,
because QByteArray is an \l{implicitly shared} class and the
instance returned by this function contains the \a data pointer,
the caller must not delete \a data or modify it directly as long
as the returned QByteArray and any copies exist. However,
QByteArray does not take ownership of \a data, so the QByteArray
destructor will never delete the raw \a data, even when the
last QByteArray referring to \a data is destroyed.
A subsequent attempt to modify the contents of the returned
QByteArray or any copy made from it will cause it to create a deep
copy of the \a data array before doing the modification. This
ensures that the raw \a data array itself will never be modified
by QByteArray.
Here is an example of how to read data using a QDataStream on raw
data in memory without copying the raw data into a QByteArray:
\snippet code/src_corelib_text_qbytearray.cpp 43
\warning A byte array created with fromRawData() is \e not '\\0'-terminated,
unless the raw data contains a '\\0' byte at position \a size. While that
does not matter for QDataStream or functions like indexOf(), passing the
byte array to a function accepting a \c{const char *} expected to be
'\\0'-terminated will fail.
\sa setRawData(), data(), constData(), nullTerminate(), nullTerminated()
*/
/*!
\since 4.7
Resets the QByteArray to use the first \a size bytes of the
\a data array. The bytes are \e not copied. The QByteArray will
contain the \a data pointer. The caller guarantees that \a data
will not be deleted or modified as long as this QByteArray and any
copies of it exist that have not been modified.
This function can be used instead of fromRawData() to re-use
existing QByteArray objects to save memory re-allocations.
\sa fromRawData(), data(), constData(), nullTerminate(), nullTerminated()
*/
QByteArray &QByteArray::setRawData(const char *data, qsizetype size)
{
if (!data || !size)
clear();
else
*this = fromRawData(data, size);
return *this;
}
namespace {
struct fromBase64_helper_result {
qsizetype decodedLength;
QByteArray::Base64DecodingStatus status;
};
fromBase64_helper_result fromBase64_helper(const char *input, qsizetype inputSize,
char *output /* may alias input */,
QByteArray::Base64Options options)
{
fromBase64_helper_result result{ 0, QByteArray::Base64DecodingStatus::Ok };
unsigned int buf = 0;
int nbits = 0;
qsizetype offset = 0;
for (qsizetype i = 0; i < inputSize; ++i) {
int ch = input[i];
int d;
if (ch >= 'A' && ch <= 'Z') {
d = ch - 'A';
} else if (ch >= 'a' && ch <= 'z') {
d = ch - 'a' + 26;
} else if (ch >= '0' && ch <= '9') {
d = ch - '0' + 52;
} else if (ch == '+' && (options & QByteArray::Base64UrlEncoding) == 0) {
d = 62;
} else if (ch == '-' && (options & QByteArray::Base64UrlEncoding) != 0) {
d = 62;
} else if (ch == '/' && (options & QByteArray::Base64UrlEncoding) == 0) {
d = 63;
} else if (ch == '_' && (options & QByteArray::Base64UrlEncoding) != 0) {
d = 63;
} else {
if (options & QByteArray::AbortOnBase64DecodingErrors) {
if (ch == '=') {
// can have 1 or 2 '=' signs, in both cases padding base64Size to
// a multiple of 4. Any other case is illegal.
if ((inputSize % 4) != 0) {
result.status = QByteArray::Base64DecodingStatus::IllegalInputLength;
return result;
} else if ((i == inputSize - 1) ||
(i == inputSize - 2 && input[++i] == '=')) {
d = -1; // ... and exit the loop, normally
} else {
result.status = QByteArray::Base64DecodingStatus::IllegalPadding;
return result;
}
} else {
result.status = QByteArray::Base64DecodingStatus::IllegalCharacter;
return result;
}
} else {
d = -1;
}
}
if (d != -1) {
buf = (buf << 6) | d;
nbits += 6;
if (nbits >= 8) {
nbits -= 8;
Q_ASSERT(offset < i);
output[offset++] = buf >> nbits;
buf &= (1 << nbits) - 1;
}
}
}
result.decodedLength = offset;
return result;
}
} // anonymous namespace
/*!
\fn QByteArray::FromBase64Result QByteArray::fromBase64Encoding(QByteArray &&base64, Base64Options options)
\fn QByteArray::FromBase64Result QByteArray::fromBase64Encoding(const QByteArray &base64, Base64Options options)
\since 5.15
\overload
Decodes the Base64 array \a base64, using the options
defined by \a options. If \a options contains \c{IgnoreBase64DecodingErrors}
(the default), the input is not checked for validity; invalid
characters in the input are skipped, enabling the decoding process to
continue with subsequent characters. If \a options contains
\c{AbortOnBase64DecodingErrors}, then decoding will stop at the first
invalid character.
For example:
\snippet code/src_corelib_text_qbytearray.cpp 44ter
The algorithm used to decode Base64-encoded data is defined in \l{RFC 4648}.
Returns a QByteArrayFromBase64Result object, containing the decoded
data and a flag telling whether decoding was successful. If the
\c{AbortOnBase64DecodingErrors} option was passed and the input
data was invalid, it is unspecified what the decoded data contains.
\sa toBase64()
*/
QByteArray::FromBase64Result QByteArray::fromBase64Encoding(QByteArray &&base64, Base64Options options)
{
// try to avoid a detach when calling data(), as it would over-allocate
// (we need less space when decoding than the one required by the full copy)
if (base64.isDetached()) {
const auto base64result = fromBase64_helper(base64.data(),
base64.size(),
base64.data(), // in-place
options);
base64.truncate(base64result.decodedLength);
return { std::move(base64), base64result.status };
}
return fromBase64Encoding(base64, options);
}
QByteArray::FromBase64Result QByteArray::fromBase64Encoding(const QByteArray &base64, Base64Options options)
{
const auto base64Size = base64.size();
QByteArray result((base64Size * 3) / 4, Qt::Uninitialized);
const auto base64result = fromBase64_helper(base64.data(),
base64Size,
const_cast<char *>(result.constData()),
options);
result.truncate(base64result.decodedLength);
return { std::move(result), base64result.status };
}
/*!
\since 5.2
Returns a decoded copy of the Base64 array \a base64, using the options
defined by \a options. If \a options contains \c{IgnoreBase64DecodingErrors}
(the default), the input is not checked for validity; invalid
characters in the input are skipped, enabling the decoding process to
continue with subsequent characters. If \a options contains
\c{AbortOnBase64DecodingErrors}, then decoding will stop at the first
invalid character.
For example:
\snippet code/src_corelib_text_qbytearray.cpp 44
The algorithm used to decode Base64-encoded data is defined in \l{RFC 4648}.
Returns the decoded data, or, if the \c{AbortOnBase64DecodingErrors}
option was passed and the input data was invalid, an empty byte array.
\note The fromBase64Encoding() function is recommended in new code.
\sa toBase64(), fromBase64Encoding()
*/
QByteArray QByteArray::fromBase64(const QByteArray &base64, Base64Options options)
{
if (auto result = fromBase64Encoding(base64, options))
return std::move(result.decoded);
return QByteArray();
}
/*!
Returns a decoded copy of the hex encoded array \a hexEncoded. Input is not
checked for validity; invalid characters in the input are skipped, enabling
the decoding process to continue with subsequent characters.
For example:
\snippet code/src_corelib_text_qbytearray.cpp 45
\sa toHex()
*/
QByteArray QByteArray::fromHex(const QByteArray &hexEncoded)
{
QByteArray res((hexEncoded.size() + 1)/ 2, Qt::Uninitialized);
uchar *result = (uchar *)res.data() + res.size();
bool odd_digit = true;
for (qsizetype i = hexEncoded.size() - 1; i >= 0; --i) {
uchar ch = uchar(hexEncoded.at(i));
int tmp = QtMiscUtils::fromHex(ch);
if (tmp == -1)
continue;
if (odd_digit) {
--result;
*result = tmp;
odd_digit = false;
} else {
*result |= tmp << 4;
odd_digit = true;
}
}
res.remove(0, result - (const uchar *)res.constData());
return res;
}
/*!
Returns a hex encoded copy of the byte array.
The hex encoding uses the numbers 0-9 and the letters a-f.
If \a separator is not '\0', the separator character is inserted between
the hex bytes.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 50
\since 5.9
\sa fromHex()
*/
QByteArray QByteArray::toHex(char separator) const
{
if (isEmpty())
return QByteArray();
const qsizetype length = separator ? (size() * 3 - 1) : (size() * 2);
QByteArray hex(length, Qt::Uninitialized);
char *hexData = hex.data();
const uchar *data = (const uchar *)this->data();
for (qsizetype i = 0, o = 0; i < size(); ++i) {
hexData[o++] = QtMiscUtils::toHexLower(data[i] >> 4);
hexData[o++] = QtMiscUtils::toHexLower(data[i] & 0xf);
if ((separator) && (o < length))
hexData[o++] = separator;
}
return hex;
}
static void q_fromPercentEncoding(QByteArray *ba, char percent)
{
if (ba->isEmpty())
return;
char *data = ba->data();
const char *inputPtr = data;
qsizetype i = 0;
qsizetype len = ba->size();
qsizetype outlen = 0;
int a, b;
char c;
while (i < len) {
c = inputPtr[i];
if (c == percent && i + 2 < len) {
a = inputPtr[++i];
b = inputPtr[++i];
if (a >= '0' && a <= '9') a -= '0';
else if (a >= 'a' && a <= 'f') a = a - 'a' + 10;
else if (a >= 'A' && a <= 'F') a = a - 'A' + 10;
if (b >= '0' && b <= '9') b -= '0';
else if (b >= 'a' && b <= 'f') b = b - 'a' + 10;
else if (b >= 'A' && b <= 'F') b = b - 'A' + 10;
*data++ = (char)((a << 4) | b);
} else {
*data++ = c;
}
++i;
++outlen;
}
if (outlen != len)
ba->truncate(outlen);
}
/*!
\since 6.4
Decodes URI/URL-style percent-encoding.
Returns a byte array containing the decoded text. The \a percent parameter
allows use of a different character than '%' (for instance, '_' or '=') as
the escape character.
For example:
\snippet code/src_corelib_text_qbytearray.cpp 54
\note Given invalid input (such as a string containing the sequence "%G5",
which is not a valid hexadecimal number) the output will be invalid as
well. As an example: the sequence "%G5" could be decoded to 'W'.
\sa toPercentEncoding(), QUrl::fromPercentEncoding()
*/
QByteArray QByteArray::percentDecoded(char percent) const
{
if (isEmpty())
return *this; // Preserves isNull().
QByteArray tmp = *this;
q_fromPercentEncoding(&tmp, percent);
return tmp;
}
/*!
\since 4.4
Decodes \a input from URI/URL-style percent-encoding.
Returns a byte array containing the decoded text. The \a percent parameter
allows use of a different character than '%' (for instance, '_' or '=') as
the escape character. Equivalent to input.percentDecoded(percent).
For example:
\snippet code/src_corelib_text_qbytearray.cpp 51
\sa percentDecoded()
*/
QByteArray QByteArray::fromPercentEncoding(const QByteArray &input, char percent)
{
return input.percentDecoded(percent);
}
/*! \fn QByteArray QByteArray::fromStdString(const std::string &str)
\since 5.4
Returns a copy of the \a str string as a QByteArray.
\sa toStdString(), QString::fromStdString()
*/
QByteArray QByteArray::fromStdString(const std::string &s)
{
return QByteArray(s.data(), qsizetype(s.size()));
}
/*!
\fn std::string QByteArray::toStdString() const
\since 5.4
Returns a std::string object with the data contained in this
QByteArray.
This operator is mostly useful to pass a QByteArray to a function
that accepts a std::string object.
\sa fromStdString(), QString::toStdString()
*/
std::string QByteArray::toStdString() const
{
return std::string(data(), size_t(size()));
}
/*!
\fn QByteArray::operator std::string_view() const noexcept
\since 6.10
Converts this QByteArray object to a \c{std::string_view} object.
The returned string view will span over the entirety of the byte
array.
*/
/*!
\since 4.4
Returns a URI/URL-style percent-encoded copy of this byte array. The
\a percent parameter allows you to override the default '%'
character for another.
By default, this function will encode all bytes that are not one of the
following:
ALPHA ("a" to "z" and "A" to "Z") / DIGIT (0 to 9) / "-" / "." / "_" / "~"
To prevent bytes from being encoded pass them to \a exclude. To force bytes
to be encoded pass them to \a include. The \a percent character is always
encoded.
Example:
\snippet code/src_corelib_text_qbytearray.cpp 52
The hex encoding uses the numbers 0-9 and the uppercase letters A-F.
\sa fromPercentEncoding(), QUrl::toPercentEncoding()
*/
QByteArray QByteArray::toPercentEncoding(const QByteArray &exclude, const QByteArray &include,
char percent) const
{
if (isNull())
return QByteArray(); // preserve null
if (isEmpty())
return QByteArray(data(), 0);
const auto contains = [](const QByteArray &view, char c) {
// As view.contains(c), but optimised to bypass a lot of overhead:
return view.size() > 0 && memchr(view.data(), c, view.size()) != nullptr;
};
QByteArray result = *this;
char *output = nullptr;
qsizetype length = 0;
for (unsigned char c : *this) {
if (char(c) != percent
&& ((c >= 0x61 && c <= 0x7A) // ALPHA
|| (c >= 0x41 && c <= 0x5A) // ALPHA
|| (c >= 0x30 && c <= 0x39) // DIGIT
|| c == 0x2D // -
|| c == 0x2E // .
|| c == 0x5F // _
|| c == 0x7E // ~
|| contains(exclude, c))
&& !contains(include, c)) {
if (output)
output[length] = c;
++length;
} else {
if (!output) {
// detach now
result.resize(size() * 3); // worst case
output = result.data();
}
output[length++] = percent;
output[length++] = QtMiscUtils::toHexUpper((c & 0xf0) >> 4);
output[length++] = QtMiscUtils::toHexUpper(c & 0xf);
}
}
if (output)
result.truncate(length);
return result;
}
#if defined(Q_OS_WASM) || defined(Q_QDOC)
/*!
Constructs a new QByteArray containing a copy of the Uint8Array \a uint8array.
This function transfers data from a JavaScript data buffer - which
is not addressable from C++ code - to heap memory owned by a QByteArray.
The Uint8Array can be released once this function returns and a copy
has been made.
The \a uint8array argument must an emscripten::val referencing an Uint8Array
object, e.g. obtained from a global JavaScript variable:
\snippet code/src_corelib_text_qbytearray.cpp 55
This function returns a null QByteArray if the size of the Uint8Array
exceeds the maximum capacity of QByteArray, or if the \a uint8array
argument is not of the Uint8Array type.
\since 6.5
\ingroup platform-type-conversions
\sa toEcmaUint8Array()
*/
QByteArray QByteArray::fromEcmaUint8Array(emscripten::val uint8array)
{
return qstdweb::Uint8Array(uint8array).copyToQByteArray();
}
/*!
Creates a Uint8Array from a QByteArray.
This function transfers data from heap memory owned by a QByteArray
to a JavaScript data buffer. The function allocates and copies into an
ArrayBuffer, and returns a Uint8Array view to that buffer.
The JavaScript objects own a copy of the data, and this
QByteArray can be safely deleted after the copy has been made.
\snippet code/src_corelib_text_qbytearray.cpp 56
\since 6.5
\ingroup platform-type-conversions
\sa toEcmaUint8Array()
*/
emscripten::val QByteArray::toEcmaUint8Array()
{
return qstdweb::Uint8Array::copyFrom(*this).val();
}
#endif
/*! \typedef QByteArray::ConstIterator
\internal
*/
/*! \typedef QByteArray::Iterator
\internal
*/
/*! \typedef QByteArray::const_iterator
This typedef provides an STL-style const iterator for QByteArray.
\sa QByteArray::const_reverse_iterator, QByteArray::iterator
*/
/*! \typedef QByteArray::iterator
This typedef provides an STL-style non-const iterator for QByteArray.
\sa QByteArray::reverse_iterator, QByteArray::const_iterator
*/
/*! \typedef QByteArray::const_reverse_iterator
\since 5.6
This typedef provides an STL-style const reverse iterator for QByteArray.
\sa QByteArray::reverse_iterator, QByteArray::const_iterator
*/
/*! \typedef QByteArray::reverse_iterator
\since 5.6
This typedef provides an STL-style non-const reverse iterator for QByteArray.
\sa QByteArray::const_reverse_iterator, QByteArray::iterator
*/
/*! \typedef QByteArray::size_type
\internal
*/
/*! \typedef QByteArray::difference_type
\internal
*/
/*! \typedef QByteArray::const_reference
\internal
*/
/*! \typedef QByteArray::reference
\internal
*/
/*! \typedef QByteArray::const_pointer
\internal
*/
/*! \typedef QByteArray::pointer
\internal
*/
/*! \typedef QByteArray::value_type
\internal
*/
/*!
\fn DataPtr &QByteArray::data_ptr()
\internal
*/
/*!
\typedef QByteArray::DataPtr
\internal
*/
/*!
\macro QByteArrayLiteral(ba)
\relates QByteArray
The macro generates the data for a QByteArray out of the string literal \a
ba at compile time. Creating a QByteArray from it is free in this case, and
the generated byte array data is stored in the read-only segment of the
compiled object file.
For instance:
\snippet code/src_corelib_text_qbytearray.cpp 53
Using QByteArrayLiteral instead of a double quoted plain C++ string literal
can significantly speed up creation of QByteArray instances from data known
at compile time.
\sa QStringLiteral
*/
#if QT_DEPRECATED_SINCE(6, 8)
/*!
\fn QtLiterals::operator""_qba(const char *str, size_t size)
\relates QByteArray
\since 6.2
\deprecated [6.8] Use \c _ba from Qt::StringLiterals namespace instead.
Literal operator that creates a QByteArray out of the first \a size characters
in the char string literal \a str.
The QByteArray is created at compile time, and the generated string data is stored
in the read-only segment of the compiled object file. Duplicate literals may share
the same read-only memory. This functionality is interchangeable with
QByteArrayLiteral, but saves typing when many string literals are present in the
code.
The following code creates a QByteArray:
\code
auto str = "hello"_qba;
\endcode
\sa QByteArrayLiteral, QtLiterals::operator""_qs(const char16_t *str, size_t size)
*/
#endif // QT_DEPRECATED_SINCE(6, 8)
/*!
\fn Qt::Literals::StringLiterals::operator""_ba(const char *str, size_t size)
\relates QByteArray
\since 6.4
Literal operator that creates a QByteArray out of the first \a size characters
in the char string literal \a str.
The QByteArray is created at compile time, and the generated string data is stored
in the read-only segment of the compiled object file. Duplicate literals may share
the same read-only memory. This functionality is interchangeable with
QByteArrayLiteral, but saves typing when many string literals are present in the
code.
The following code creates a QByteArray:
\code
using namespace Qt::Literals::StringLiterals;
auto str = "hello"_ba;
\endcode
\sa Qt::Literals::StringLiterals
*/
/*!
\class QByteArray::FromBase64Result
\inmodule QtCore
\ingroup tools
\since 5.15
\brief The QByteArray::FromBase64Result class holds the result of
a call to QByteArray::fromBase64Encoding.
Objects of this class can be used to check whether the conversion
was successful, and if so, retrieve the decoded QByteArray. The
conversion operators defined for QByteArray::FromBase64Result make
its usage straightforward:
\snippet code/src_corelib_text_qbytearray.cpp 44ter
Alternatively, it is possible to access the conversion status
and the decoded data directly:
\snippet code/src_corelib_text_qbytearray.cpp 44quater
\sa QByteArray::fromBase64
*/
/*!
\variable QByteArray::FromBase64Result::decoded
Contains the decoded byte array.
*/
/*!
\variable QByteArray::FromBase64Result::decodingStatus
Contains whether the decoding was successful, expressed as a value
of type QByteArray::Base64DecodingStatus.
*/
/*!
\fn QByteArray::FromBase64Result::operator bool() const
Returns whether the decoding was successful. This is equivalent
to checking whether the \c{decodingStatus} member is equal to
QByteArray::Base64DecodingStatus::Ok.
*/
/*!
\fn QByteArray &QByteArray::FromBase64Result::operator*() const
Returns the decoded byte array.
*/
/*!
\fn bool QByteArray::FromBase64Result::operator==(const QByteArray::FromBase64Result &lhs, const QByteArray::FromBase64Result &rhs) noexcept
Returns \c true if \a lhs and \a rhs are equal, otherwise returns \c false.
\a lhs and \a rhs are equal if and only if they contain the same decoding
status and, if the status is QByteArray::Base64DecodingStatus::Ok, if and
only if they contain the same decoded data.
*/
/*!
\fn bool QByteArray::FromBase64Result::operator!=(const QByteArray::FromBase64Result &lhs, const QByteArray::FromBase64Result &rhs) noexcept
Returns \c true if \a lhs and \a rhs are different, otherwise
returns \c false.
*/
/*!
\qhashold{QByteArray::FromBase64Result}
*/
size_t qHash(const QByteArray::FromBase64Result &key, size_t seed) noexcept
{
return qHashMulti(seed, key.decoded, static_cast<int>(key.decodingStatus));
}
/*! \fn template <typename T> qsizetype erase(QByteArray &ba, const T &t)
\relates QByteArray
\since 6.1
Removes all elements that compare equal to \a t from the
byte array \a ba. Returns the number of elements removed, if any.
\sa erase_if
*/
/*! \fn template <typename Predicate> qsizetype erase_if(QByteArray &ba, Predicate pred)
\relates QByteArray
\since 6.1
Removes all elements for which the predicate \a pred returns true
from the byte array \a ba. Returns the number of elements removed, if
any.
\sa erase
*/
QT_END_NAMESPACE