qtbase/src/plugins/imageformats/ico/qicohandler.cpp
John Chadwick 31a3e82b70 Fix transparency in 16 bit and 24 bit ico files
As a result of the fix for QTBUG-75214, Qt inadvertently no longer
reads the AND mask that specifies transparency for 16-bit and 24-bit
ico files. This is because it tries to detect 32-bit icons by checking
icoAttrib.depth == 32, but icoAttrib.depth is set to the depth of the
QImage, not the depth of the icon, and 32-bit QImage is used for all of
the non-indexed cases (16-bit, 24-bit and 32-bit.)

This commit instead uses icoAttrib.nbits, which should reliably
determine whether or not the icon is 32-bit. This makes the behavior
consistent with other ico reading software, including Windows.

Also, adds a unit test that verifies correct behavior of icon masks,
checking for both QTBUG-75214 and QTBUG-113319.

Amends 1d128ed1dfbcf49453ada922e54381c37264fde5.

Fixes: QTBUG-113319
Change-Id: I89ac86ff16054c8925fff6afc8c530fa737f8385
Reviewed-by: Eirik Aavitsland <eirik.aavitsland@qt.io>
(cherry picked from commit 1079b537396fcf5cd6c50cc8af19b078a50cf547)
Reviewed-by: Qt Cherry-pick Bot <cherrypick_bot@qt-project.org>
2023-07-11 18:35:54 +00:00

818 lines
25 KiB
C++

// Copyright (C) 2022 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only
/*!
\class QtIcoHandler
\since 4.4
\brief The QtIcoHandler class provides support for the ICO image format.
\internal
*/
#include "qicohandler.h"
#include <QtCore/qendian.h>
#include <private/qendian_p.h>
#include <QtGui/QImage>
#include <QtCore/QBuffer>
#include <QtCore/QFile>
#include <QtCore/QLoggingCategory>
#include <qvariant.h>
QT_BEGIN_NAMESPACE
Q_LOGGING_CATEGORY(lcIco, "qt.gui.imageio.ico")
namespace {
// These next two structs represent how the icon information is stored
// in an ICO file.
typedef struct
{
quint8 bWidth; // Width of the image
quint8 bHeight; // Height of the image (actual height, not times 2)
quint8 bColorCount; // Number of colors in image (0 if >=8bpp) [ not ture ]
quint8 bReserved; // Reserved
quint16_le wPlanes; // Color Planes
quint16_le wBitCount; // Bits per pixel
quint32_le dwBytesInRes; // how many bytes in this resource?
quint32_le dwImageOffset; // where in the file is this image
} ICONDIRENTRY, *LPICONDIRENTRY;
#define ICONDIRENTRY_SIZE 16
typedef struct
{
quint16_le idReserved; // Reserved
quint16_le idType; // resource type (1 for icons, 2 for cursors)
quint16_le idCount; // how many images?
ICONDIRENTRY idEntries[1]; // the entries for each image
} ICONDIR, *LPICONDIR;
#define ICONDIR_SIZE 6 // Exclude the idEntries field
typedef struct { // BMP information header
quint32_le biSize; // size of this struct
quint32_le biWidth; // pixmap width
quint32_le biHeight; // pixmap height (specifies the combined height of the XOR and AND masks)
quint16_le biPlanes; // should be 1
quint16_le biBitCount; // number of bits per pixel
quint32_le biCompression; // compression method
quint32_le biSizeImage; // size of image
quint32_le biXPelsPerMeter; // horizontal resolution
quint32_le biYPelsPerMeter; // vertical resolution
quint32_le biClrUsed; // number of colors used
quint32_le biClrImportant; // number of important colors
} BMP_INFOHDR ,*LPBMP_INFOHDR;
#define BMP_INFOHDR_SIZE 40
}
class ICOReader
{
public:
ICOReader(QIODevice * iodevice);
int count();
QImage iconAt(int index);
static bool canRead(QIODevice *iodev);
static QList<QImage> read(QIODevice *device);
static bool write(QIODevice *device, const QList<QImage> &images);
bool readIconEntry(int index, ICONDIRENTRY * iconEntry);
private:
bool readHeader();
bool readBMPHeader(quint32 imageOffset, BMP_INFOHDR * header);
void findColorInfo(QImage & image);
void readColorTable(QImage & image);
void readBMP(QImage & image);
void read1BitBMP(QImage & image);
void read4BitBMP(QImage & image);
void read8BitBMP(QImage & image);
void read16_24_32BMP(QImage & image);
struct IcoAttrib
{
int nbits;
int ncolors;
int h;
int w;
int depth;
} icoAttrib;
QIODevice * iod;
qint64 startpos;
bool headerRead;
ICONDIR iconDir;
};
// Data readers and writers that takes care of alignment and endian stuff.
static bool readIconDirEntry(QIODevice *iodev, ICONDIRENTRY *iconDirEntry)
{
if (iodev)
return (iodev->read((char*)iconDirEntry, ICONDIRENTRY_SIZE) == ICONDIRENTRY_SIZE);
return false;
}
static bool writeIconDirEntry(QIODevice *iodev, const ICONDIRENTRY &iconEntry)
{
if (iodev)
return iodev->write((char*)&iconEntry, ICONDIRENTRY_SIZE) == ICONDIRENTRY_SIZE;
return false;
}
static bool readIconDir(QIODevice *iodev, ICONDIR *iconDir)
{
if (iodev)
return (iodev->read((char*)iconDir, ICONDIR_SIZE) == ICONDIR_SIZE);
return false;
}
static bool writeIconDir(QIODevice *iodev, const ICONDIR &iconDir)
{
if (iodev)
return iodev->write((char*)&iconDir, 6) == 6;
return false;
}
static bool readBMPInfoHeader(QIODevice *iodev, BMP_INFOHDR *pHeader)
{
if (iodev)
return (iodev->read((char*)pHeader, BMP_INFOHDR_SIZE) == BMP_INFOHDR_SIZE);
return false;
}
static bool writeBMPInfoHeader(QIODevice *iodev, const BMP_INFOHDR &header)
{
if (iodev)
return iodev->write((char*)&header, BMP_INFOHDR_SIZE) == BMP_INFOHDR_SIZE;
return false;
}
ICOReader::ICOReader(QIODevice * iodevice)
: iod(iodevice)
, startpos(0)
, headerRead(false)
{
}
int ICOReader::count()
{
if (readHeader())
return iconDir.idCount;
return 0;
}
bool ICOReader::canRead(QIODevice *iodev)
{
bool isProbablyICO = false;
if (iodev) {
qint64 oldPos = iodev->pos();
ICONDIR ikonDir;
if (readIconDir(iodev, &ikonDir)) {
if (readIconDirEntry(iodev, &ikonDir.idEntries[0])) {
// ICO format does not have a magic identifier, so we read 6 different values, which will hopefully be enough to identify the file.
if ( ikonDir.idReserved == 0
&& (ikonDir.idType == 1 || ikonDir.idType == 2)
&& ikonDir.idEntries[0].bReserved == 0
&& (ikonDir.idEntries[0].wPlanes <= 1 || ikonDir.idType == 2)
&& (ikonDir.idEntries[0].wBitCount <= 32 || ikonDir.idType == 2) // Bits per pixel
&& ikonDir.idEntries[0].dwBytesInRes >= 40 // Must be over 40, since sizeof (infoheader) == 40
) {
isProbablyICO = true;
}
if (iodev->isSequential()) {
// Our structs might be padded due to alignment, so we need to fetch each member before we ungetChar() !
quint32 tmp = ikonDir.idEntries[0].dwImageOffset;
iodev->ungetChar((tmp >> 24) & 0xff);
iodev->ungetChar((tmp >> 16) & 0xff);
iodev->ungetChar((tmp >> 8) & 0xff);
iodev->ungetChar(tmp & 0xff);
tmp = ikonDir.idEntries[0].dwBytesInRes;
iodev->ungetChar((tmp >> 24) & 0xff);
iodev->ungetChar((tmp >> 16) & 0xff);
iodev->ungetChar((tmp >> 8) & 0xff);
iodev->ungetChar(tmp & 0xff);
tmp = ikonDir.idEntries[0].wBitCount;
iodev->ungetChar((tmp >> 8) & 0xff);
iodev->ungetChar(tmp & 0xff);
tmp = ikonDir.idEntries[0].wPlanes;
iodev->ungetChar((tmp >> 8) & 0xff);
iodev->ungetChar(tmp & 0xff);
iodev->ungetChar(ikonDir.idEntries[0].bReserved);
iodev->ungetChar(ikonDir.idEntries[0].bColorCount);
iodev->ungetChar(ikonDir.idEntries[0].bHeight);
iodev->ungetChar(ikonDir.idEntries[0].bWidth);
}
}
if (iodev->isSequential()) {
// Our structs might be padded due to alignment, so we need to fetch each member before we ungetChar() !
quint32 tmp = ikonDir.idCount;
iodev->ungetChar((tmp >> 8) & 0xff);
iodev->ungetChar(tmp & 0xff);
tmp = ikonDir.idType;
iodev->ungetChar((tmp >> 8) & 0xff);
iodev->ungetChar(tmp & 0xff);
tmp = ikonDir.idReserved;
iodev->ungetChar((tmp >> 8) & 0xff);
iodev->ungetChar(tmp & 0xff);
}
}
if (!iodev->isSequential()) iodev->seek(oldPos);
}
return isProbablyICO;
}
bool ICOReader::readHeader()
{
if (iod && !headerRead) {
startpos = iod->pos();
if (readIconDir(iod, &iconDir)) {
if (iconDir.idReserved == 0 && (iconDir.idType == 1 || iconDir.idType == 2))
headerRead = true;
}
}
return headerRead;
}
bool ICOReader::readIconEntry(int index, ICONDIRENTRY *iconEntry)
{
if (readHeader()) {
if (iod->seek(startpos + ICONDIR_SIZE + (index * ICONDIRENTRY_SIZE))) {
return readIconDirEntry(iod, iconEntry);
}
}
return false;
}
bool ICOReader::readBMPHeader(quint32 imageOffset, BMP_INFOHDR * header)
{
if (iod) {
if (iod->seek(startpos + imageOffset)) {
if (readBMPInfoHeader(iod, header)) {
return true;
}
}
}
return false;
}
void ICOReader::findColorInfo(QImage & image)
{
if (icoAttrib.ncolors > 0) { // set color table
readColorTable(image);
} else if (icoAttrib.nbits == 16) { // don't support RGB values for 15/16 bpp
image = QImage();
}
}
void ICOReader::readColorTable(QImage & image)
{
if (iod) {
image.setColorCount(icoAttrib.ncolors);
uchar rgb[4];
for (int i=0; i<icoAttrib.ncolors; i++) {
if (iod->read((char*)rgb, 4) != 4) {
image = QImage();
break;
}
image.setColor(i, qRgb(rgb[2],rgb[1],rgb[0]));
}
} else {
image = QImage();
}
}
void ICOReader::readBMP(QImage & image)
{
if (icoAttrib.nbits == 1) { // 1 bit BMP image
read1BitBMP(image);
} else if (icoAttrib.nbits == 4) { // 4 bit BMP image
read4BitBMP(image);
} else if (icoAttrib.nbits == 8) {
read8BitBMP(image);
} else if (icoAttrib.nbits == 16 || icoAttrib.nbits == 24 || icoAttrib.nbits == 32 ) { // 16,24,32 bit BMP image
read16_24_32BMP(image);
}
}
/**
* NOTE: A 1 bit BMP is only flipped vertically, and not horizontally like all other color depths!
* (This is the same with the bitmask)
*
*/
void ICOReader::read1BitBMP(QImage & image)
{
if (iod) {
int h = image.height();
qsizetype bpl = image.bytesPerLine();
while (--h >= 0) {
if (iod->read((char*)image.scanLine(h),bpl) != bpl) {
image = QImage();
break;
}
}
} else {
image = QImage();
}
}
void ICOReader::read4BitBMP(QImage & image)
{
if (iod) {
int h = icoAttrib.h;
int buflen = ((icoAttrib.w+7)/8)*4;
uchar *buf = new uchar[buflen];
Q_CHECK_PTR(buf);
while (--h >= 0) {
if (iod->read((char*)buf,buflen) != buflen) {
image = QImage();
break;
}
uchar *p = image.scanLine(h);
uchar *b = buf;
for (int i=0; i<icoAttrib.w/2; i++) { // convert nibbles to bytes
*p++ = *b >> 4;
*p++ = *b++ & 0x0f;
}
if (icoAttrib.w & 1) // the last nibble
*p = *b >> 4;
}
delete [] buf;
} else {
image = QImage();
}
}
void ICOReader::read8BitBMP(QImage & image)
{
if (iod) {
int h = icoAttrib.h;
qsizetype bpl = image.bytesPerLine();
while (--h >= 0) {
if (iod->read((char *)image.scanLine(h), bpl) != bpl) {
image = QImage();
break;
}
}
} else {
image = QImage();
}
}
void ICOReader::read16_24_32BMP(QImage & image)
{
if (iod) {
int h = icoAttrib.h;
QRgb *p;
QRgb *end;
uchar *buf = new uchar[image.bytesPerLine()];
qsizetype bpl = ((qsizetype(icoAttrib.w)*icoAttrib.nbits+31)/32)*4;
uchar *b;
while (--h >= 0) {
p = (QRgb *)image.scanLine(h);
end = p + icoAttrib.w;
if (iod->read((char *)buf, bpl) != bpl) {
image = QImage();
break;
}
b = buf;
while (p < end) {
if (icoAttrib.nbits == 24)
*p++ = qRgb(*(b+2), *(b+1), *b);
else if (icoAttrib.nbits == 32)
*p++ = qRgba(*(b+2), *(b+1), *b, *(b+3));
b += icoAttrib.nbits/8;
}
}
delete[] buf;
} else {
image = QImage();
}
}
static const char icoOrigDepthKey[] = "_q_icoOrigDepth";
QImage ICOReader::iconAt(int index)
{
QImage img;
if (count() > index) { // forces header to be read
ICONDIRENTRY iconEntry;
if (readIconEntry(index, &iconEntry)) {
static const uchar pngMagicData[] = { 137, 80, 78, 71, 13, 10, 26, 10 };
if (!iod->seek(iconEntry.dwImageOffset)
|| iconEntry.dwBytesInRes > iod->bytesAvailable())
return img;
const QByteArray pngMagic = QByteArray::fromRawData((const char*)pngMagicData, sizeof(pngMagicData));
const bool isPngImage = (iod->read(pngMagic.size()) == pngMagic);
if (isPngImage) {
iod->seek(iconEntry.dwImageOffset);
QImage image = QImage::fromData(iod->read(iconEntry.dwBytesInRes), "png");
image.setText(QLatin1String(icoOrigDepthKey), QString::number(iconEntry.wBitCount));
return image;
}
BMP_INFOHDR header;
if (readBMPHeader(iconEntry.dwImageOffset, &header)) {
icoAttrib.nbits = header.biBitCount ? header.biBitCount : iconEntry.wBitCount;
switch (icoAttrib.nbits) {
case 32:
case 24:
case 16:
icoAttrib.depth = 32;
break;
case 8:
case 4:
icoAttrib.depth = 8;
break;
case 1:
icoAttrib.depth = 1;
break;
default:
return img;
break;
}
if (icoAttrib.depth == 32) // there's no colormap
icoAttrib.ncolors = 0;
else // # colors used
icoAttrib.ncolors = header.biClrUsed ? uint(header.biClrUsed) : 1 << icoAttrib.nbits;
if (icoAttrib.ncolors > 256) //color table can't be more than 256
return img;
icoAttrib.w = iconEntry.bWidth;
if (icoAttrib.w == 0) // means 256 pixels
icoAttrib.w = header.biWidth;
icoAttrib.h = iconEntry.bHeight;
if (icoAttrib.h == 0) // means 256 pixels
icoAttrib.h = header.biHeight/2;
if (icoAttrib.w > 256 || icoAttrib.h > 256) // Max ico size
return img;
QImage::Format format = QImage::Format_ARGB32;
if (icoAttrib.nbits == 24)
format = QImage::Format_RGB32;
else if (icoAttrib.ncolors == 2 && icoAttrib.depth == 1)
format = QImage::Format_Mono;
else if (icoAttrib.ncolors > 0)
format = QImage::Format_Indexed8;
QImage image;
const QSize size(icoAttrib.w, icoAttrib.h);
if (QImageIOHandler::allocateImage(size, format, &image)) {
findColorInfo(image);
if (!image.isNull()) {
readBMP(image);
if (!image.isNull()) {
if (icoAttrib.nbits == 32) {
img = std::move(image).convertToFormat(QImage::Format_ARGB32_Premultiplied);
} else {
QImage mask(image.width(), image.height(), QImage::Format_Mono);
if (!mask.isNull()) {
mask.setColorCount(2);
mask.setColor(0, qRgba(255,255,255,0xff));
mask.setColor(1, qRgba(0 ,0 ,0 ,0xff));
read1BitBMP(mask);
if (!mask.isNull()) {
img = image;
img.setAlphaChannel(mask);
}
}
}
}
}
}
img.setText(QLatin1String(icoOrigDepthKey), QString::number(iconEntry.wBitCount));
}
}
}
return img;
}
/*!
Reads all the icons from the given \a device, and returns them as
a list of QImage objects.
Each image has an alpha channel that represents the mask from the
corresponding icon.
\sa write()
*/
QList<QImage> ICOReader::read(QIODevice *device)
{
QList<QImage> images;
ICOReader reader(device);
const int N = reader.count();
images.reserve(N);
for (int i = 0; i < N; i++)
images += reader.iconAt(i);
return images;
}
/*!
Writes all the QImages in the \a images list to the given \a
device. Returns \c true if the images are written successfully;
otherwise returns \c false.
The first image in the list is stored as the first icon in the
device, and is therefore used as the default icon by applications.
The alpha channel of each image is converted to a mask for each
corresponding icon.
\sa read()
*/
bool ICOReader::write(QIODevice *device, const QList<QImage> &images)
{
bool retValue = false;
if (images.size()) {
qint64 origOffset = device->pos();
ICONDIR id;
id.idReserved = 0;
id.idType = 1;
id.idCount = images.size();
ICONDIRENTRY * entries = new ICONDIRENTRY[id.idCount];
BMP_INFOHDR * bmpHeaders = new BMP_INFOHDR[id.idCount];
QByteArray * imageData = new QByteArray[id.idCount];
for (int i=0; i<id.idCount; i++) {
QImage image = images[i];
// Scale down the image if it is larger than 256 pixels in either width or height
// because this is a maximum size of image in the ICO file.
if (image.width() > 256 || image.height() > 256)
{
image = image.scaled(256, 256, Qt::KeepAspectRatio, Qt::SmoothTransformation);
}
QImage maskImage(image.width(), image.height(), QImage::Format_Mono);
image = image.convertToFormat(QImage::Format_ARGB32);
maskImage.fill(Qt::color1);
int nbits = 32;
int bpl_bmp = ((image.width()*nbits+31)/32)*4;
entries[i].bColorCount = 0;
entries[i].bReserved = 0;
entries[i].wBitCount = nbits;
entries[i].bHeight = image.height() < 256 ? image.height() : 0; // 0 means 256
entries[i].bWidth = image.width() < 256 ? image.width() : 0; // 0 means 256
entries[i].dwBytesInRes = BMP_INFOHDR_SIZE + (bpl_bmp * image.height())
+ (maskImage.bytesPerLine() * maskImage.height());
entries[i].wPlanes = 1;
if (i == 0)
entries[i].dwImageOffset = origOffset + ICONDIR_SIZE
+ (id.idCount * ICONDIRENTRY_SIZE);
else
entries[i].dwImageOffset = entries[i-1].dwImageOffset + entries[i-1].dwBytesInRes;
bmpHeaders[i].biBitCount = entries[i].wBitCount;
bmpHeaders[i].biClrImportant = 0;
bmpHeaders[i].biClrUsed = entries[i].bColorCount;
bmpHeaders[i].biCompression = 0;
bmpHeaders[i].biHeight = entries[i].bHeight ? entries[i].bHeight * 2 : 256 * 2; // 2 is for the mask
bmpHeaders[i].biPlanes = entries[i].wPlanes;
bmpHeaders[i].biSize = BMP_INFOHDR_SIZE;
bmpHeaders[i].biSizeImage = entries[i].dwBytesInRes - BMP_INFOHDR_SIZE;
bmpHeaders[i].biWidth = entries[i].bWidth ? entries[i].bWidth : 256;
bmpHeaders[i].biXPelsPerMeter = 0;
bmpHeaders[i].biYPelsPerMeter = 0;
QBuffer buffer(&imageData[i]);
buffer.open(QIODevice::WriteOnly);
uchar *buf = new uchar[bpl_bmp];
uchar *b;
memset( buf, 0, bpl_bmp );
int y;
for (y = image.height() - 1; y >= 0; y--) { // write the image bits
// 32 bits
QRgb *p = (QRgb *)image.scanLine(y);
QRgb *end = p + image.width();
b = buf;
int x = 0;
while (p < end) {
*b++ = qBlue(*p);
*b++ = qGreen(*p);
*b++ = qRed(*p);
*b++ = qAlpha(*p);
if (qAlpha(*p) > 0) // Even mostly transparent pixels must not be masked away
maskImage.setPixel(x, y, 0);
p++;
x++;
}
buffer.write((char*)buf, bpl_bmp);
}
delete[] buf;
// NOTE! !! The mask is only flipped vertically - not horizontally !!
for (y = maskImage.height() - 1; y >= 0; y--)
buffer.write((char*)maskImage.scanLine(y), maskImage.bytesPerLine());
}
if (writeIconDir(device, id)) {
int i;
bool bOK = true;
for (i = 0; i < id.idCount && bOK; i++) {
bOK = writeIconDirEntry(device, entries[i]);
}
if (bOK) {
for (i = 0; i < id.idCount && bOK; i++) {
bOK = writeBMPInfoHeader(device, bmpHeaders[i]);
bOK &= (device->write(imageData[i]) == (int) imageData[i].size());
}
retValue = bOK;
}
}
delete [] entries;
delete [] bmpHeaders;
delete [] imageData;
}
return retValue;
}
/*!
Constructs an instance of QtIcoHandler initialized to use \a device.
*/
QtIcoHandler::QtIcoHandler(QIODevice *device)
{
m_currentIconIndex = 0;
setDevice(device);
m_pICOReader = new ICOReader(device);
}
/*!
Destructor for QtIcoHandler.
*/
QtIcoHandler::~QtIcoHandler()
{
delete m_pICOReader;
}
QVariant QtIcoHandler::option(ImageOption option) const
{
if (option == Size || option == ImageFormat) {
ICONDIRENTRY iconEntry;
if (m_pICOReader->readIconEntry(m_currentIconIndex, &iconEntry)) {
switch (option) {
case Size:
return QSize(iconEntry.bWidth ? iconEntry.bWidth : 256,
iconEntry.bHeight ? iconEntry.bHeight : 256);
case ImageFormat:
switch (iconEntry.wBitCount) {
case 2:
return QImage::Format_Mono;
case 24:
return QImage::Format_RGB32;
case 32:
return QImage::Format_ARGB32;
default:
return QImage::Format_Indexed8;
}
break;
default:
break;
}
}
}
return QVariant();
}
bool QtIcoHandler::supportsOption(ImageOption option) const
{
return (option == Size || option == ImageFormat);
}
/*!
* Verifies if some values (magic bytes) are set as expected in the header of the file.
* If the magic bytes were found, it is assumed that the QtIcoHandler can read the file.
*
*/
bool QtIcoHandler::canRead() const
{
bool bCanRead = false;
QIODevice *device = QImageIOHandler::device();
if (device) {
bCanRead = ICOReader::canRead(device);
if (bCanRead)
setFormat("ico");
} else {
qCWarning(lcIco, "QtIcoHandler::canRead() called with no device");
}
return bCanRead;
}
/*! This static function is used by the plugin code, and is provided for convenience only.
\a device must be an opened device with pointing to the start of the header data of the ICO file.
*/
bool QtIcoHandler::canRead(QIODevice *device)
{
Q_ASSERT(device);
return ICOReader::canRead(device);
}
/*! \reimp
*/
bool QtIcoHandler::read(QImage *image)
{
bool bSuccess = false;
QImage img = m_pICOReader->iconAt(m_currentIconIndex);
// Make sure we only write to \a image when we succeed.
if (!img.isNull()) {
bSuccess = true;
*image = img;
}
return bSuccess;
}
/*! \reimp
*/
bool QtIcoHandler::write(const QImage &image)
{
QIODevice *device = QImageIOHandler::device();
QList<QImage> imgs;
imgs.append(image);
return ICOReader::write(device, imgs);
}
/*! \reimp
*/
int QtIcoHandler::imageCount() const
{
return m_pICOReader->count();
}
/*! \reimp
*/
bool QtIcoHandler::jumpToImage(int imageNumber)
{
if (imageNumber < imageCount()) {
m_currentIconIndex = imageNumber;
return true;
}
return false;
}
/*! \reimp
*/
bool QtIcoHandler::jumpToNextImage()
{
return jumpToImage(m_currentIconIndex + 1);
}
QT_END_NAMESPACE