A non-prefix build is a build where you don't have to run
make install.
To do a non-prefix build, pass -DFEATURE_developer_build=ON when
invoking CMake on qtbase. Note that this of course also enables
developer build features (private tests, etc).
When doing a non-prefix build, the CMAKE_INSTALL_PREFIX cache variable
will point to the qtbase build directory.
Tests can be run without installing Qt (QPA plugins are picked up from
the build dir).
This patch stops installation of any files by forcing the
make "install" target be a no-op.
When invoking cmake on the qtsvg module (or any other module),
the CMAKE_INSTALL_PREFIX variable should be set to the qtbase build
directory.
The developer-build feature is propagated via the QtCore Config file,
so that when building other modules, you don't have to specify it
on the command line again.
As a result of the change, all libraries, plugins, tools, include dirs,
CMake Config files, CMake Targets files, Macro files, etc,
will be placed in the qtbase build directory, mimicking the file layout
of an installed Qt file layout.
Only examples and tests are kept in the separate module build
directories, which is equivalent to how qmake does it.
The following global variables contain paths for the
appropriate prefix or non prefix builds:
QT_BUILD_DIR, QT_INSTALL_DIR, QT_CONFIG_BUILD_DIR,
QT_CONFIG_INSTALL_DIR. These should be used by developers
when deciding where files should be placed.
All usages of install() are replaced by qt_install(), which has some
additional logic on how to handle associationg of CMake targets to
export names.
When installing files, some consideration should be taken if
qt_copy_or_install() needs to be used instead of qt_install(),
which takes care of copying files from the source dir to the build dir
when doing non-prefix builds.
Tested with qtbase and qtsvg, developer builds, non-developer builds
and static developer builds on Windows, Linux and macOS.
Task-number: QTBUG-75581
Change-Id: I0ed27fb6467662dd24fb23aee6b95dd2c9c4061f
Reviewed-by: Kevin Funk <kevin.funk@kdab.com>
Reviewed-by: Tobias Hunger <tobias.hunger@qt.io>
Generate CMake config files which export Qt targets with a Qt:: prefix
(i.e. without a major version suffix in the namespace)
Change-Id: Ia07f98be6d0e24c196e3880b7469f1f0c6232c06
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
This is needed because dependencies added after add_qt_module with extend_target
are currently not taken into account.
Task-number: QTBUG-75538
Change-Id: I2c72207fb88b2480e41a2c8550978fb194275617
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
This change introduces a new function called qt_find_package()
which can take an extra option called PROVIDED_TARGETS, which
associates targets with the package that defines those targets.
This is done by setting the INTERFACE_QT_PACKAGE_NAME and
INTERFACE_QT_PACKAGE_VERSION properties on the imported targets.
This information allows us to generate appropriate find_dependency()
calls in a module's Config file for third party libraries.
For example when an application links against QtCore, it should also
link against zlib and atomic libraries. In order to do that, the
library locations first have to be found by CMake. This is achieved by
embedding find_dependency(ZLIB) and find_dependency(Atomic) in
Qt5CoreDependencies.cmake which is included by Qt5CoreConfig.cmake.
The latter is picked up when an application project contains
find_package(Qt5Core), and thus all linking dependencies are resolved.
The information 'which package provides which targets' is contained
in the python json2cmake conversion script. The generated output of
the script contains qt_find_package() calls that represent that
information.
The Qt5CoreDependencies.cmake file and which which dependencies it
contains is generated at the QtPostProcess stop.
Note that for non-static Qt builds, we only need to propagate public
3rd party libraries. For static builds, we need all third party
libraries.
In order for the INTERFACE_QT_PACKAGE_NAME property to be read in any
scope, the targets on which the property is set, have to be GLOBAL.
Also for applications and other modules to find all required third
party libraries, we have to install all our custom Find modules, and
make sure they define INTERFACE IMPORTED libraries, and not just
IMPORTED libraries.
Change-Id: I694d6e32d05b96d5e241df0156fc79d0029426aa
Reviewed-by: Tobias Hunger <tobias.hunger@qt.io>
Enables the use of e.g. QT_NO_DEBUG in compiler flags, -fPIC, passing on of
QT_NAMESPACE, etc. pp.
Dropping a lot of custom code which handled adding imported targets for
the command-line tools (this is all being handled by CMake already).
It needs to be investigated if we need to resurrect
Qt5GuiConfigExtras.cmake.in in one way or the other.
Change-Id: I4fa141b68fddaad4f33e628c59d5d0b3a7b3a096
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>
For now create targets a la "Qt5::Core" to stay compatible with the
current Qt5 naming scheme. The name is controllable via a CMake option.
Change-Id: If43c058221949b1900c2093f39ccc9d0f38028f1
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>
Introduce a new cached variable INSTALL_CMAKE_NAMESPACE for defining the
prefix used for CMake config files (c.f. "${PREFIX}Core/${PREFIX}CoreConfig.cmake")
Also make sure to `find_dependency(...)` the required packages inside
the individual CMake config files. I.e. in Qt5WidgetsConfig.cmake,
search for Qt5Core, etc. pp..
Change-Id: Idc027925fe9d5323091c4853803ad5ce44b1afc6
Reviewed-by: Jean-Michaël Celerier <jean-michael.celerier@kdab.com>
Reviewed-by: Tobias Hunger <tobias.hunger@qt.io>
This is less self-contained than what we have, but significantly speeds
up cmake configure/generate runs.
This patch also warns when a feature is already defined.
Change-Id: I8cab63e208ba98756b47d362a39b462f5ec55e20
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>