Update bundled libjpeg-turbo to version 2.0.3

[ChangeLog][Third-Party Code] libjpeg-turbo was updated to version 2.0.3

Squashed cherry pick of:
e14e8427faae670c662efede723edc2db4c875cb
97e78b0e1f0396cdee0319bafaf8ce1d6eb74f64
f3dbe98dca58731ff98dff3cc9111a8252f8e1e6

Change-Id: I9f9b8b3a913fd5843759c0610f43b22c5bee67dc
Reviewed-by: Allan Sandfeld Jensen <allan.jensen@qt.io>
This commit is contained in:
Eirik Aavitsland 2019-10-30 10:54:37 +01:00
parent c6d07c5418
commit 7bbbfc38ce
15 changed files with 185 additions and 78 deletions

View File

@ -14,7 +14,7 @@ libjpeg-turbo is covered by three compatible BSD-style open source licenses:
This license covers the TurboJPEG API library and associated programs, as
well as the build system.
- The zlib License, which is listed below
- The [zlib License](https://opensource.org/licenses/Zlib)
This license is a subset of the other two, and it covers the libjpeg-turbo
SIMD extensions.
@ -66,7 +66,7 @@ best of our understanding.
2. If your binary distribution includes or uses the TurboJPEG API, then
your product documentation must include the text of the Modified BSD
License.
License (see below.)
**Origin**
- Clause 2 of the Modified BSD License
@ -91,7 +91,8 @@ best of our understanding.
The Modified (3-clause) BSD License
===================================
Copyright (C)\<YEAR\> \<AUTHOR\>. All Rights Reserved.
Copyright (C)2009-2019 D. R. Commander. All Rights Reserved.
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -118,28 +119,6 @@ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
The zlib License
================
Copyright (C) \<YEAR\>, \<AUTHOR\>.
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Why Three Licenses?
===================

View File

@ -2,22 +2,22 @@
#define JPEG_LIB_VERSION 80
#define LIBJPEG_TURBO_VERSION 2.0.0
#define LIBJPEG_TURBO_VERSION 2.0.3
#define LIBJPEG_TURBO_VERSION_NUMBER 2000000
#define LIBJPEG_TURBO_VERSION_NUMBER 2000002
#define C_ARITH_CODING_SUPPORTED
#define C_ARITH_CODING_SUPPORTED 1
#define D_ARITH_CODING_SUPPORTED
#define D_ARITH_CODING_SUPPORTED 1
#define MEM_SRCDST_SUPPORTED
#define MEM_SRCDST_SUPPORTED 1
#define BITS_IN_JSAMPLE 8
#define HAVE_STDDEF_H
#define HAVE_STDDEF_H 1
#define HAVE_STDLIB_H
#define HAVE_STDLIB_H 1
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_CHAR 1
#define HAVE_UNSIGNED_SHORT
#define HAVE_UNSIGNED_SHORT 1

View File

@ -8,7 +8,7 @@
#define PACKAGE_NAME "libjpeg-turbo"
#define VERSION "2.0.0"
#define VERSION "2.0.3"
#if SIZE_MAX == 0xffffffff
#define SIZEOF_SIZE_T 4

View File

@ -6,11 +6,11 @@
"Description": "The Independent JPEG Group's JPEG software",
"Homepage": "http://libjpeg-turbo.virtualgl.org/",
"Version": "2.0.0",
"Version": "2.0.3",
"License": "Independent JPEG Group License",
"LicenseId": "IJG",
"LicenseFile": "LICENSE",
"Copyright": "Copyright (C) 2009-2018 D. R. Commander
"Copyright": "Copyright (C) 2009-2019 D. R. Commander
Copyright (C) 2011-2016 Siarhei Siamashka
Copyright (C) 2015-2016, 2018 Matthieu Darbois
Copyright (C) 2015 Intel Corporation

View File

@ -1,3 +1,111 @@
2.0.3
=====
### Significant changes relative to 2.0.2:
1. Fixed "using JNI after critical get" errors that occurred on Android
platforms when passing invalid arguments to certain methods in the TurboJPEG
Java API.
2. Fixed a regression in the SIMD feature detection code, introduced by
the AVX2 SIMD extensions (2.0 beta1[1]), that was known to cause an illegal
instruction exception, in rare cases, on CPUs that lack support for CPUID leaf
07H (or on which the maximum CPUID leaf has been limited by way of a BIOS
setting.)
3. The 4:4:0 (h1v2) fancy (smooth) chroma upsampling algorithm in the
decompressor now uses a similar bias pattern to that of the 4:2:2 (h2v1) fancy
chroma upsampling algorithm, rounding up or down the upsampled result for
alternate pixels rather than always rounding down. This ensures that,
regardless of whether a 4:2:2 JPEG image is rotated or transposed prior to
decompression (in the frequency domain) or after decompression (in the spatial
domain), the final image will be similar.
4. Fixed an integer overflow and subsequent segfault that occurred when
attempting to compress or decompress images with more than 1 billion pixels
using the TurboJPEG API.
5. Fixed a regression introduced by 2.0 beta1[15] whereby attempting to
generate a progressive JPEG image on an SSE2-capable CPU using a scan script
containing one or more scans with lengths divisible by 16 would result in an
error ("Missing Huffman code table entry") and an invalid JPEG image.
6. Fixed an issue whereby `tjDecodeYUV()` and `tjDecodeYUVPlanes()` would throw
an error ("Invalid progressive parameters") or a warning ("Inconsistent
progression sequence") if passed a TurboJPEG instance that was previously used
to decompress a progressive JPEG image.
2.0.2
=====
### Significant changes relative to 2.0.1:
1. Fixed a regression introduced by 2.0.1[5] that prevented a runtime search
path (rpath) from being embedded in the libjpeg-turbo shared libraries and
executables for macOS and iOS. This caused a fatal error of the form
"dyld: Library not loaded" when attempting to use one of the executables,
unless `DYLD_LIBRARY_PATH` was explicitly set to the location of the
libjpeg-turbo shared libraries.
2. Fixed an integer overflow and subsequent segfault (CVE-2018-20330) that
occurred when attempting to load a BMP file with more than 1 billion pixels
using the `tjLoadImage()` function.
3. Fixed a buffer overrun (CVE-2018-19664) that occurred when attempting to
decompress a specially-crafted malformed JPEG image to a 256-color BMP using
djpeg.
4. Fixed a floating point exception that occurred when attempting to
decompress a specially-crafted malformed JPEG image with a specified image
width or height of 0 using the C version of TJBench.
5. The TurboJPEG API will now decompress 4:4:4 JPEG images with 2x1, 1x2, 3x1,
or 1x3 luminance and chrominance sampling factors. This is a non-standard way
of specifying 1x subsampling (normally 4:4:4 JPEGs have 1x1 luminance and
chrominance sampling factors), but the JPEG format and the libjpeg API both
allow it.
6. Fixed a regression introduced by 2.0 beta1[7] that caused djpeg to generate
incorrect PPM images when used with the `-colors` option.
7. Fixed an issue whereby a static build of libjpeg-turbo (a build in which
`ENABLE_SHARED` is `0`) could not be installed using the Visual Studio IDE.
8. Fixed a severe performance issue in the Loongson MMI SIMD extensions that
occurred when compressing RGB images whose image rows were not 64-bit-aligned.
2.0.1
=====
### Significant changes relative to 2.0.0:
1. Fixed a regression introduced with the new CMake-based Un*x build system,
whereby jconfig.h could cause compiler warnings of the form
`"HAVE_*_H" redefined` if it was included by downstream Autotools-based
projects that used `AC_CHECK_HEADERS()` to check for the existence of locale.h,
stddef.h, or stdlib.h.
2. The `jsimd_quantize_float_dspr2()` and `jsimd_convsamp_float_dspr2()`
functions in the MIPS DSPr2 SIMD extensions are now disabled at compile time
if the soft float ABI is enabled. Those functions use instructions that are
incompatible with the soft float ABI.
3. Fixed a regression in the SIMD feature detection code, introduced by
the AVX2 SIMD extensions (2.0 beta1[1]), that caused libjpeg-turbo to crash on
Windows 7 if Service Pack 1 was not installed.
4. Fixed out-of-bounds read in cjpeg that occurred when attempting to compress
a specially-crafted malformed color-index (8-bit-per-sample) Targa file in
which some of the samples (color indices) exceeded the bounds of the Targa
file's color table.
5. Fixed an issue whereby installing a fully static build of libjpeg-turbo
(a build in which `CFLAGS` contains `-static` and `ENABLE_SHARED` is `0`) would
fail with "No valid ELF RPATH or RUNPATH entry exists in the file."
2.0.0
=====

View File

@ -135,12 +135,11 @@ without recompiling. libjpeg-turbo does not claim to support all of the
libjpeg v7+ features, nor to produce identical output to libjpeg v7+ in all
cases (see below.)
By passing an argument of `--with-jpeg7` or `--with-jpeg8` to `configure`, or
an argument of `-DWITH_JPEG7=1` or `-DWITH_JPEG8=1` to `cmake`, you can build a
version of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so that
programs that are built against libjpeg v7 or v8 can be run with libjpeg-turbo.
The following section describes which libjpeg v7+ features are supported and
which aren't.
By passing an argument of `-DWITH_JPEG7=1` or `-DWITH_JPEG8=1` to `cmake`, you
can build a version of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so
that programs that are built against libjpeg v7 or v8 can be run with
libjpeg-turbo. The following section describes which libjpeg v7+ features are
supported and which aren't.
### Support for libjpeg v7 and v8 Features
@ -247,9 +246,8 @@ don't, and it allows those functions to be provided in the "official"
libjpeg-turbo binaries.
Those who are concerned about maintaining strict conformance with the libjpeg
v6b or v7 API can pass an argument of `--without-mem-srcdst` to `configure` or
an argument of `-DWITH_MEM_SRCDST=0` to `cmake` prior to building
libjpeg-turbo. This will restore the pre-1.3 behavior, in which
v6b or v7 API can pass an argument of `-DWITH_MEM_SRCDST=0` to `cmake` prior to
building libjpeg-turbo. This will restore the pre-1.3 behavior, in which
`jpeg_mem_src()` and `jpeg_mem_dest()` are only included when emulating the
libjpeg v8 API/ABI.
@ -344,3 +342,15 @@ quality of 98-100. Thus, libjpeg-turbo must use the non-SIMD quantization
function in those cases. This causes performance to drop by as much as 40%.
It is therefore strongly advised that you use the slow integer forward DCT
whenever encoding images with a JPEG quality of 98 or higher.
Memory Debugger Pitfalls
========================
Valgrind and Memory Sanitizer (MSan) can generate false positives
(specifically, incorrect reports of uninitialized memory accesses) when used
with libjpeg-turbo's SIMD extensions. It is generally recommended that the
SIMD extensions be disabled, either by passing an argument of `-DWITH_SIMD=0`
to `cmake` when configuring the build or by setting the environment variable
`JSIMD_FORCENONE` to `1` at run time, when testing libjpeg-turbo with Valgrind,
MSan, or other memory debuggers.

View File

@ -4,7 +4,7 @@
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2009-2011, 2014-2016, 2018, D. R. Commander.
* Copyright (C) 2009-2011, 2014-2016, 2018-2019, D. R. Commander.
* Copyright (C) 2015, Matthieu Darbois.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
@ -356,6 +356,8 @@ dump_buffer(working_state *state)
put_buffer = (put_buffer << size) | code; \
}
#if SIZEOF_SIZE_T != 8 && !defined(_WIN64)
#define CHECKBUF15() { \
if (put_bits > 15) { \
EMIT_BYTE() \
@ -363,6 +365,8 @@ dump_buffer(working_state *state)
} \
}
#endif
#define CHECKBUF31() { \
if (put_bits > 31) { \
EMIT_BYTE() \

View File

@ -492,8 +492,8 @@ prepare_for_pass(j_compress_ptr cinfo)
*/
master->pass_type = output_pass;
master->pass_number++;
/*FALLTHROUGH*/
#endif
/*FALLTHROUGH*/
case output_pass:
/* Do a data-output pass. */
/* We need not repeat per-scan setup if prior optimization pass did it. */

View File

@ -10,16 +10,16 @@
#define LIBJPEG_TURBO_VERSION_NUMBER @LIBJPEG_TURBO_VERSION_NUMBER@
/* Support arithmetic encoding */
#cmakedefine C_ARITH_CODING_SUPPORTED
#cmakedefine C_ARITH_CODING_SUPPORTED 1
/* Support arithmetic decoding */
#cmakedefine D_ARITH_CODING_SUPPORTED
#cmakedefine D_ARITH_CODING_SUPPORTED 1
/* Support in-memory source/destination managers */
#cmakedefine MEM_SRCDST_SUPPORTED
#cmakedefine MEM_SRCDST_SUPPORTED 1
/* Use accelerated SIMD routines. */
#cmakedefine WITH_SIMD
#cmakedefine WITH_SIMD 1
/*
* Define BITS_IN_JSAMPLE as either
@ -33,37 +33,37 @@
#define BITS_IN_JSAMPLE @BITS_IN_JSAMPLE@ /* use 8 or 12 */
/* Define to 1 if you have the <locale.h> header file. */
#cmakedefine HAVE_LOCALE_H
#cmakedefine HAVE_LOCALE_H 1
/* Define to 1 if you have the <stddef.h> header file. */
#cmakedefine HAVE_STDDEF_H
#cmakedefine HAVE_STDDEF_H 1
/* Define to 1 if you have the <stdlib.h> header file. */
#cmakedefine HAVE_STDLIB_H
#cmakedefine HAVE_STDLIB_H 1
/* Define if you need to include <sys/types.h> to get size_t. */
#cmakedefine NEED_SYS_TYPES_H
#cmakedefine NEED_SYS_TYPES_H 1
/* Define if you have BSD-like bzero and bcopy in <strings.h> rather than
memset/memcpy in <string.h>. */
#cmakedefine NEED_BSD_STRINGS
#cmakedefine NEED_BSD_STRINGS 1
/* Define to 1 if the system has the type `unsigned char'. */
#cmakedefine HAVE_UNSIGNED_CHAR
#cmakedefine HAVE_UNSIGNED_CHAR 1
/* Define to 1 if the system has the type `unsigned short'. */
#cmakedefine HAVE_UNSIGNED_SHORT
#cmakedefine HAVE_UNSIGNED_SHORT 1
/* Compiler does not support pointers to undefined structures. */
#cmakedefine INCOMPLETE_TYPES_BROKEN
#cmakedefine INCOMPLETE_TYPES_BROKEN 1
/* Define if your (broken) compiler shifts signed values as if they were
unsigned. */
#cmakedefine RIGHT_SHIFT_IS_UNSIGNED
#cmakedefine RIGHT_SHIFT_IS_UNSIGNED 1
/* Define to 1 if type `char' is unsigned and you are not using gcc. */
#ifndef __CHAR_UNSIGNED__
#cmakedefine __CHAR_UNSIGNED__
#cmakedefine __CHAR_UNSIGNED__ 1
#endif
/* Define to empty if `const' does not conform to ANSI C. */

View File

@ -592,7 +592,7 @@ ycck_cmyk_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
/* Declarations for ordered dithering
*
* We use a 4x4 ordered dither array packed into 32 bits. This array is
* sufficent for dithering RGB888 to RGB565.
* sufficient for dithering RGB888 to RGB565.
*/
#define DITHER_MASK 0x3

View File

@ -4,7 +4,7 @@
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2009-2011, 2016, 2018, D. R. Commander.
* Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
@ -589,7 +589,11 @@ decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
if (entropy->dc_needed[blkn]) {
/* Convert DC difference to actual value, update last_dc_val */
int ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
/* This is really just
* s += state.last_dc_val[ci];
* It is written this way in order to shut up UBSan.
*/
s = (int)((unsigned int)s + (unsigned int)state.last_dc_val[ci]);
state.last_dc_val[ci] = s;
if (block) {
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
@ -684,7 +688,7 @@ decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
if (entropy->dc_needed[blkn]) {
int ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
s = (int)((unsigned int)s + (unsigned int)state.last_dc_val[ci]);
state.last_dc_val[ci] = s;
if (block)
(*block)[0] = (JCOEF)s;

View File

@ -429,8 +429,6 @@ h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l)
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r)
#define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3)
#define WRITE_TWO_PIXELS_LE(addr, pixels) { \
((INT16 *)(addr))[0] = (INT16)(pixels); \
((INT16 *)(addr))[1] = (INT16)((pixels) >> 16); \
@ -448,7 +446,7 @@ h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
/* Declarations for ordered dithering
*
* We use a 4x4 ordered dither array packed into 32 bits. This array is
* sufficent for dithering RGB888 to RGB565.
* sufficient for dithering RGB888 to RGB565.
*/
#define DITHER_MASK 0x3

View File

@ -8,6 +8,7 @@
* Copyright (C) 2010, 2015-2016, D. R. Commander.
* Copyright (C) 2014, MIPS Technologies, Inc., California.
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2019, Arm Limited.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
@ -315,9 +316,9 @@ h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr0, inptr1, outptr;
#if BITS_IN_JSAMPLE == 8
int thiscolsum;
int thiscolsum, bias;
#else
JLONG thiscolsum;
JLONG thiscolsum, bias;
#endif
JDIMENSION colctr;
int inrow, outrow, v;
@ -327,15 +328,18 @@ h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
for (v = 0; v < 2; v++) {
/* inptr0 points to nearest input row, inptr1 points to next nearest */
inptr0 = input_data[inrow];
if (v == 0) /* next nearest is row above */
if (v == 0) { /* next nearest is row above */
inptr1 = input_data[inrow - 1];
else /* next nearest is row below */
bias = 1;
} else { /* next nearest is row below */
inptr1 = input_data[inrow + 1];
bias = 2;
}
outptr = output_data[outrow++];
for (colctr = 0; colctr < compptr->downsampled_width; colctr++) {
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
*outptr++ = (JSAMPLE)((thiscolsum + 1) >> 2);
*outptr++ = (JSAMPLE)((thiscolsum + bias) >> 2);
}
}
inrow++;

View File

@ -154,7 +154,7 @@ typedef struct {
*/
boolean is_padded; /* is the colorindex padded for odither? */
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
int Ncolors[MAX_Q_COMPS]; /* # of values allocated to each component */
/* Variables for ordered dithering */
int row_index; /* cur row's vertical index in dither matrix */

View File

@ -4,7 +4,7 @@
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright (C) 2010, 2012-2018, D. R. Commander.
* Copyright (C) 2010, 2012-2019, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
@ -36,7 +36,7 @@
*/
#define JCOPYRIGHT \
"Copyright (C) 2009-2018 D. R. Commander\n" \
"Copyright (C) 2009-2019 D. R. Commander\n" \
"Copyright (C) 2011-2016 Siarhei Siamashka\n" \
"Copyright (C) 2015-2016, 2018 Matthieu Darbois\n" \
"Copyright (C) 2015 Intel Corporation\n" \
@ -49,4 +49,4 @@
"Copyright (C) 1991-2016 Thomas G. Lane, Guido Vollbeding"
#define JCOPYRIGHT_SHORT \
"Copyright (C) 1991-2018 The libjpeg-turbo Project and many others"
"Copyright (C) 1991-2019 The libjpeg-turbo Project and many others"