Split qobject_impl.h into qobjectdefs_impl.h

This is done to make QtPrivate::FunctionPointer available to the
QMetaMethod declaration in qmetaobject.h (which already included
qobjectdefs.h, since that's where QMetaObject is declared), so that
the new template-based QMetaMethod::fromSignal() function may be
implemented.

The logic for statically generating the array of qMetaTypeId (used by
the template-based QObject::connect()) remains in qobject_impl.h,
since it's not needed for QMetaMethod::fromSignal(). Moreover, moving
that code would introduce a circular dependency, since qmetatype.h
as of commit 194674044693d6b101c3dc2f4784718540d343a4 now includes
qobjectdefs.h.

Change-Id: I36c35041e0c6661c3cf523684177a0b6c19e2d35
Reviewed-by: Olivier Goffart <ogoffart@woboq.com>
Reviewed-by: Bradley T. Hughes <bradley.hughes@nokia.com>
This commit is contained in:
Kent Hansen 2012-04-20 14:45:21 +02:00 committed by Qt by Nokia
parent 28c79d8c0b
commit 7b118c6456
4 changed files with 488 additions and 425 deletions

View File

@ -14,6 +14,7 @@ HEADERS += \
kernel/qobject.h \
kernel/qobject_impl.h \
kernel/qobjectdefs.h \
kernel/qobjectdefs_impl.h \
kernel/qsignalmapper.h \
kernel/qsocketnotifier.h \
kernel/qtimer.h \

View File

@ -51,431 +51,6 @@ QT_BEGIN_NAMESPACE
namespace QtPrivate {
template <typename T> struct RemoveRef { typedef T Type; };
template <typename T> struct RemoveRef<T&> { typedef T Type; };
template <typename T> struct RemoveConstRef { typedef T Type; };
template <typename T> struct RemoveConstRef<const T&> { typedef T Type; };
/*
The following List classes are used to help to handle the list of arguments.
It follow the same principles as the lisp lists.
List_Left<L,N> take a list and a number as a parametter and returns (via the Value typedef,
the list composed of the first N element of the list
*/
#ifndef Q_COMPILER_VARIADIC_TEMPLATES
template <typename Head, typename Tail> struct List { typedef Head Car; typedef Tail Cdr; };
template <typename L, int N> struct List_Left { typedef List<typename L::Car, typename List_Left<typename L::Cdr, N - 1>::Value > Value; };
template <typename L> struct List_Left<L,0> { typedef void Value; };
#else
// With variadic template, lists are represented using a variadic template argument instead of the lisp way
template <typename...> struct List {};
template <typename Head, typename... Tail> struct List<Head, Tail...> { typedef Head Car; typedef List<Tail...> Cdr; };
template <typename, typename> struct List_Append;
template <typename... L1, typename...L2> struct List_Append<List<L1...>, List<L2...>> { typedef List<L1..., L2...> Value; };
template <typename L, int N> struct List_Left {
typedef typename List_Append<List<typename L::Car>,typename List_Left<typename L::Cdr, N - 1>::Value>::Value Value;
};
template <typename L> struct List_Left<L, 0> { typedef List<> Value; };
#endif
// List_Select<L,N> returns (via typedef Value) the Nth element of the list L
template <typename L, int N> struct List_Select { typedef typename List_Select<typename L::Cdr, N - 1>::Value Value; };
template <typename L> struct List_Select<L,0> { typedef typename L::Car Value; };
/*
trick to set the return value of a slot that works even if the signal or the slot returns void
to be used like function(), ApplyReturnValue<ReturnType>(&return_value)
if function() returns a value, the operator,(T, ApplyReturnValue<ReturnType>) is called, but if it
returns void, the builtin one is used without an error.
*/
template <typename T>
struct ApplyReturnValue {
void *data;
ApplyReturnValue(void *data_) : data(data_) {}
};
template<typename T, typename U>
void operator,(const T &value, const ApplyReturnValue<U> &container) {
if (container.data)
*reinterpret_cast<U*>(container.data) = value;
}
#ifdef Q_COMPILER_RVALUE_REFS
template<typename T, typename U>
void operator,(T &&value, const ApplyReturnValue<U> &container) {
if (container.data)
*reinterpret_cast<U*>(container.data) = value;
}
#endif
template<typename T>
void operator,(T, const ApplyReturnValue<void> &) {}
/*
The FunctionPointer<Func> struct is a type trait for function pointer.
- ArgumentCount is the number of argument, or -1 if it is unknown
- the Object typedef is the Object of a pointer to member function
- the Arguments typedef is the list of argument (in a QtPrivate::List)
- the Function typedef is an alias to the template parametter Func
- the call<Args, R>(f,o,args) method is used to call that slot
Args is the list of argument of the signal
R is the return type of the signal
f is the function pointer
o is the receiver object
and args is the array of pointer to arguments, as used in qt_metacall
The Functor<Func,N> struct is the helper to call a functor of N argument.
its call function is the same as the FunctionPointer::call function.
*/
#ifndef Q_COMPILER_VARIADIC_TEMPLATES
template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1}; };
template<class Obj, typename Ret> struct FunctionPointer<Ret (Obj::*) ()>
{
typedef Obj Object;
typedef void Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) ();
enum {ArgumentCount = 0};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) { (o->*f)(), ApplyReturnValue<R>(arg[0]); }
};
template<class Obj, typename Ret, typename Arg1> struct FunctionPointer<Ret (Obj::*) (Arg1)>
{
typedef Obj Object;
typedef List<Arg1, void> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1);
enum {ArgumentCount = 1};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<typename Args::Car>::Type *>(arg[1]))), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, void> > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2);
enum {ArgumentCount = 2};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, void> > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3);
enum {ArgumentCount = 3};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3, Arg4)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, void> > > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3, Arg4);
enum {ArgumentCount = 4};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3, Arg4, Arg5)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, List<Arg5, void> > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3, Arg4, Arg5);
enum {ArgumentCount = 5};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5, typename Arg6>
struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, List<Arg5, List<Arg6, void> > > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
enum {ArgumentCount = 6};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 5>::Value>::Type *>(arg[6])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret> struct FunctionPointer<Ret (*) ()>
{
typedef void Arguments;
typedef Ret (*Function) ();
typedef Ret ReturnType;
enum {ArgumentCount = 0};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) { f(), ApplyReturnValue<R>(arg[0]); }
};
template<typename Ret, typename Arg1> struct FunctionPointer<Ret (*) (Arg1)>
{
typedef List<Arg1, void> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1);
enum {ArgumentCount = 1};
template <typename Args, typename R>
static void call(Function f, void *, void **arg)
{ f(*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1])), ApplyReturnValue<R>(arg[0]); }
};
template<typename Ret, typename Arg1, typename Arg2> struct FunctionPointer<Ret (*) (Arg1, Arg2)>
{
typedef List<Arg1, List<Arg2, void> > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2);
enum {ArgumentCount = 2};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f(*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2])), ApplyReturnValue<R>(arg[0]); }
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3)>
{
typedef List<Arg1, List<Arg2, List<Arg3, void> > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3);
enum {ArgumentCount = 3};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3, Arg4)>
{
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, void> > > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3, Arg4);
enum {ArgumentCount = 4};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3, Arg4, Arg5)>
{
typedef List<Arg1, List<Arg2, List<Arg3,
List<Arg4, List<Arg5, void > > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3, Arg4, Arg5);
enum {ArgumentCount = 5};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5, typename Arg6> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)>
{
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, List<Arg5, List<Arg6, void> > > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
enum {ArgumentCount = 6};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 5>::Value>::Type *>(arg[6])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename F, int N> struct Functor;
template<typename Function> struct Functor<Function, 0>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) { f(), ApplyReturnValue<R>(arg[0]); }
};
template<typename Function> struct Functor<Function, 1>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f(*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 2>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 3>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 4>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 5>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 6>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 5>::Value>::Type *>(arg[6])), ApplyReturnValue<R>(arg[0]);
}
};
#else
template <int...> struct IndexesList {};
template <typename IndexList, int Right> struct IndexesAppend;
template <int... Left, int Right> struct IndexesAppend<IndexesList<Left...>, Right>
{ typedef IndexesList<Left..., Right> Value; };
template <int N> struct Indexes
{ typedef typename IndexesAppend<typename Indexes<N - 1>::Value, N - 1>::Value Value; };
template <> struct Indexes<0> { typedef IndexesList<> Value; };
template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1}; };
template <typename, typename, typename, typename> struct FunctorCall;
template <int... I, typename... SignalArgs, typename R, typename Function>
struct FunctorCall<IndexesList<I...>, List<SignalArgs...>, R, Function> {
static void call(Function f, void **arg) {
f((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[I+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... I, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<I...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...)> {
static void call(SlotRet (Obj::*f)(SlotArgs...), Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[I+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...)>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...);
enum {ArgumentCount = sizeof...(Args)};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...)>
{
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Args...);
enum {ArgumentCount = sizeof...(Args)};
template <typename SignalArgs, typename R>
static void call(Function f, void *, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
template<typename Function, int N> struct Functor
{
template <typename SignalArgs, typename R>
static void call(Function &f, void *, void **arg) {
FunctorCall<typename Indexes<N>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
#endif
/*
Logic that check if the arguments of the slot matches the argument of the signal.
To be used like this:
Q_STATIC_ASSERT(CheckCompatibleArguments<FunctionPointer<Signal>::Arguments, FunctionPointer<Slot>::Arguments>::value)
*/
template<typename A1, typename A2> struct AreArgumentsCompatible {
static int test(A2);
static char test(...);
static A1 dummy();
enum { value = sizeof(test(dummy())) == sizeof(int) };
};
template<typename A1, typename A2> struct AreArgumentsCompatible<A1, A2&> { enum { value = false }; };
template<typename A> struct AreArgumentsCompatible<A&, A&> { enum { value = true }; };
// void as a return value
template<typename A> struct AreArgumentsCompatible<void, A> { enum { value = true }; };
template<typename A> struct AreArgumentsCompatible<A, void> { enum { value = true }; };
template<> struct AreArgumentsCompatible<void, void> { enum { value = true }; };
#ifndef Q_COMPILER_VARIADIC_TEMPLATES
template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; };
template <> struct CheckCompatibleArguments<void, void> { enum { value = true }; };
template <typename List1> struct CheckCompatibleArguments<List1, void> { enum { value = true }; };
template <typename Arg1, typename Arg2, typename Tail1, typename Tail2> struct CheckCompatibleArguments<List<Arg1, Tail1>, List<Arg2, Tail2> >
{
enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value
&& CheckCompatibleArguments<Tail1, Tail2>::value };
};
#else
template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; };
template <> struct CheckCompatibleArguments<List<>, List<>> { enum { value = true }; };
template <typename List1> struct CheckCompatibleArguments<List1, List<>> { enum { value = true }; };
template <typename Arg1, typename Arg2, typename... Tail1, typename... Tail2>
struct CheckCompatibleArguments<List<Arg1, Tail1...>, List<Arg2, Tail2...>>
{
enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value
&& CheckCompatibleArguments<List<Tail1...>, List<Tail2...>>::value };
};
#endif
/*
Logic to statically generate the array of qMetaTypeId
ConnectionTypes<FunctionPointer<Signal>::Arguments>::types() returns an array

View File

@ -44,6 +44,8 @@
#include <QtCore/qnamespace.h>
#include <QtCore/qobjectdefs_impl.h>
QT_BEGIN_HEADER
QT_BEGIN_NAMESPACE

View File

@ -0,0 +1,485 @@
/****************************************************************************
**
** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef Q_QDOC
#ifndef QOBJECTDEFS_H
#error Do not include qobjectdefs_impl.h directly
#endif
QT_BEGIN_HEADER
QT_BEGIN_NAMESPACE
namespace QtPrivate {
template <typename T> struct RemoveRef { typedef T Type; };
template <typename T> struct RemoveRef<T&> { typedef T Type; };
template <typename T> struct RemoveConstRef { typedef T Type; };
template <typename T> struct RemoveConstRef<const T&> { typedef T Type; };
/*
The following List classes are used to help to handle the list of arguments.
It follow the same principles as the lisp lists.
List_Left<L,N> take a list and a number as a parametter and returns (via the Value typedef,
the list composed of the first N element of the list
*/
#ifndef Q_COMPILER_VARIADIC_TEMPLATES
template <typename Head, typename Tail> struct List { typedef Head Car; typedef Tail Cdr; };
template <typename L, int N> struct List_Left { typedef List<typename L::Car, typename List_Left<typename L::Cdr, N - 1>::Value > Value; };
template <typename L> struct List_Left<L,0> { typedef void Value; };
#else
// With variadic template, lists are represented using a variadic template argument instead of the lisp way
template <typename...> struct List {};
template <typename Head, typename... Tail> struct List<Head, Tail...> { typedef Head Car; typedef List<Tail...> Cdr; };
template <typename, typename> struct List_Append;
template <typename... L1, typename...L2> struct List_Append<List<L1...>, List<L2...>> { typedef List<L1..., L2...> Value; };
template <typename L, int N> struct List_Left {
typedef typename List_Append<List<typename L::Car>,typename List_Left<typename L::Cdr, N - 1>::Value>::Value Value;
};
template <typename L> struct List_Left<L, 0> { typedef List<> Value; };
#endif
// List_Select<L,N> returns (via typedef Value) the Nth element of the list L
template <typename L, int N> struct List_Select { typedef typename List_Select<typename L::Cdr, N - 1>::Value Value; };
template <typename L> struct List_Select<L,0> { typedef typename L::Car Value; };
/*
trick to set the return value of a slot that works even if the signal or the slot returns void
to be used like function(), ApplyReturnValue<ReturnType>(&return_value)
if function() returns a value, the operator,(T, ApplyReturnValue<ReturnType>) is called, but if it
returns void, the builtin one is used without an error.
*/
template <typename T>
struct ApplyReturnValue {
void *data;
ApplyReturnValue(void *data_) : data(data_) {}
};
template<typename T, typename U>
void operator,(const T &value, const ApplyReturnValue<U> &container) {
if (container.data)
*reinterpret_cast<U*>(container.data) = value;
}
#ifdef Q_COMPILER_RVALUE_REFS
template<typename T, typename U>
void operator,(T &&value, const ApplyReturnValue<U> &container) {
if (container.data)
*reinterpret_cast<U*>(container.data) = value;
}
#endif
template<typename T>
void operator,(T, const ApplyReturnValue<void> &) {}
/*
The FunctionPointer<Func> struct is a type trait for function pointer.
- ArgumentCount is the number of argument, or -1 if it is unknown
- the Object typedef is the Object of a pointer to member function
- the Arguments typedef is the list of argument (in a QtPrivate::List)
- the Function typedef is an alias to the template parametter Func
- the call<Args, R>(f,o,args) method is used to call that slot
Args is the list of argument of the signal
R is the return type of the signal
f is the function pointer
o is the receiver object
and args is the array of pointer to arguments, as used in qt_metacall
The Functor<Func,N> struct is the helper to call a functor of N argument.
its call function is the same as the FunctionPointer::call function.
*/
#ifndef Q_COMPILER_VARIADIC_TEMPLATES
template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1}; };
template<class Obj, typename Ret> struct FunctionPointer<Ret (Obj::*) ()>
{
typedef Obj Object;
typedef void Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) ();
enum {ArgumentCount = 0};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) { (o->*f)(), ApplyReturnValue<R>(arg[0]); }
};
template<class Obj, typename Ret, typename Arg1> struct FunctionPointer<Ret (Obj::*) (Arg1)>
{
typedef Obj Object;
typedef List<Arg1, void> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1);
enum {ArgumentCount = 1};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<typename Args::Car>::Type *>(arg[1]))), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, void> > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2);
enum {ArgumentCount = 2};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, void> > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3);
enum {ArgumentCount = 3};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3, Arg4)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, void> > > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3, Arg4);
enum {ArgumentCount = 4};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5> struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3, Arg4, Arg5)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, List<Arg5, void> > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3, Arg4, Arg5);
enum {ArgumentCount = 5};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5])), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5, typename Arg6>
struct FunctionPointer<Ret (Obj::*) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)>
{
typedef Obj Object;
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, List<Arg5, List<Arg6, void> > > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
enum {ArgumentCount = 6};
template <typename Args, typename R>
static void call(Function f, Obj *o, void **arg) {
(o->*f)( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 5>::Value>::Type *>(arg[6])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret> struct FunctionPointer<Ret (*) ()>
{
typedef void Arguments;
typedef Ret (*Function) ();
typedef Ret ReturnType;
enum {ArgumentCount = 0};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) { f(), ApplyReturnValue<R>(arg[0]); }
};
template<typename Ret, typename Arg1> struct FunctionPointer<Ret (*) (Arg1)>
{
typedef List<Arg1, void> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1);
enum {ArgumentCount = 1};
template <typename Args, typename R>
static void call(Function f, void *, void **arg)
{ f(*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1])), ApplyReturnValue<R>(arg[0]); }
};
template<typename Ret, typename Arg1, typename Arg2> struct FunctionPointer<Ret (*) (Arg1, Arg2)>
{
typedef List<Arg1, List<Arg2, void> > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2);
enum {ArgumentCount = 2};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f(*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2])), ApplyReturnValue<R>(arg[0]); }
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3)>
{
typedef List<Arg1, List<Arg2, List<Arg3, void> > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3);
enum {ArgumentCount = 3};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3, Arg4)>
{
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, void> > > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3, Arg4);
enum {ArgumentCount = 4};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3, Arg4, Arg5)>
{
typedef List<Arg1, List<Arg2, List<Arg3,
List<Arg4, List<Arg5, void > > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3, Arg4, Arg5);
enum {ArgumentCount = 5};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Ret, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5, typename Arg6> struct FunctionPointer<Ret (*) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)>
{
typedef List<Arg1, List<Arg2, List<Arg3, List<Arg4, List<Arg5, List<Arg6, void> > > > > > Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
enum {ArgumentCount = 6};
template <typename Args, typename R>
static void call(Function f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 5>::Value>::Type *>(arg[6])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename F, int N> struct Functor;
template<typename Function> struct Functor<Function, 0>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) { f(), ApplyReturnValue<R>(arg[0]); }
};
template<typename Function> struct Functor<Function, 1>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f(*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 2>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 3>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 4>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 5>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5])), ApplyReturnValue<R>(arg[0]);
}
};
template<typename Function> struct Functor<Function, 6>
{
template <typename Args, typename R>
static void call(Function &f, void *, void **arg) {
f( *reinterpret_cast<typename RemoveRef<typename List_Select<Args, 0>::Value>::Type *>(arg[1]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 1>::Value>::Type *>(arg[2]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 2>::Value>::Type *>(arg[3]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 3>::Value>::Type *>(arg[4]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 4>::Value>::Type *>(arg[5]),
*reinterpret_cast<typename RemoveRef<typename List_Select<Args, 5>::Value>::Type *>(arg[6])), ApplyReturnValue<R>(arg[0]);
}
};
#else
template <int...> struct IndexesList {};
template <typename IndexList, int Right> struct IndexesAppend;
template <int... Left, int Right> struct IndexesAppend<IndexesList<Left...>, Right>
{ typedef IndexesList<Left..., Right> Value; };
template <int N> struct Indexes
{ typedef typename IndexesAppend<typename Indexes<N - 1>::Value, N - 1>::Value Value; };
template <> struct Indexes<0> { typedef IndexesList<> Value; };
template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1}; };
template <typename, typename, typename, typename> struct FunctorCall;
template <int... I, typename... SignalArgs, typename R, typename Function>
struct FunctorCall<IndexesList<I...>, List<SignalArgs...>, R, Function> {
static void call(Function f, void **arg) {
f((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[I+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... I, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<I...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...)> {
static void call(SlotRet (Obj::*f)(SlotArgs...), Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[I+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...)>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...);
enum {ArgumentCount = sizeof...(Args)};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...)>
{
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Args...);
enum {ArgumentCount = sizeof...(Args)};
template <typename SignalArgs, typename R>
static void call(Function f, void *, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
template<typename Function, int N> struct Functor
{
template <typename SignalArgs, typename R>
static void call(Function &f, void *, void **arg) {
FunctorCall<typename Indexes<N>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
#endif
/*
Logic that check if the arguments of the slot matches the argument of the signal.
To be used like this:
Q_STATIC_ASSERT(CheckCompatibleArguments<FunctionPointer<Signal>::Arguments, FunctionPointer<Slot>::Arguments>::value)
*/
template<typename A1, typename A2> struct AreArgumentsCompatible {
static int test(A2);
static char test(...);
static A1 dummy();
enum { value = sizeof(test(dummy())) == sizeof(int) };
};
template<typename A1, typename A2> struct AreArgumentsCompatible<A1, A2&> { enum { value = false }; };
template<typename A> struct AreArgumentsCompatible<A&, A&> { enum { value = true }; };
// void as a return value
template<typename A> struct AreArgumentsCompatible<void, A> { enum { value = true }; };
template<typename A> struct AreArgumentsCompatible<A, void> { enum { value = true }; };
template<> struct AreArgumentsCompatible<void, void> { enum { value = true }; };
#ifndef Q_COMPILER_VARIADIC_TEMPLATES
template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; };
template <> struct CheckCompatibleArguments<void, void> { enum { value = true }; };
template <typename List1> struct CheckCompatibleArguments<List1, void> { enum { value = true }; };
template <typename Arg1, typename Arg2, typename Tail1, typename Tail2> struct CheckCompatibleArguments<List<Arg1, Tail1>, List<Arg2, Tail2> >
{
enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value
&& CheckCompatibleArguments<Tail1, Tail2>::value };
};
#else
template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; };
template <> struct CheckCompatibleArguments<List<>, List<>> { enum { value = true }; };
template <typename List1> struct CheckCompatibleArguments<List1, List<>> { enum { value = true }; };
template <typename Arg1, typename Arg2, typename... Tail1, typename... Tail2>
struct CheckCompatibleArguments<List<Arg1, Tail1...>, List<Arg2, Tail2...>>
{
enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value
&& CheckCompatibleArguments<List<Tail1...>, List<Tail2...>>::value };
};
#endif
}
QT_END_NAMESPACE
QT_END_HEADER
#endif