Make the overflow math functions public
As the standard library does not provide equivalent functionality, those functions are really useful to everyone, not only to Qt itself. [ChangeLog][QtCore] The overflow-safe math functions qAddOverflow(), qSubOverflow(), qMulOverflow() were added. Change-Id: I5a0a4742dae9b6f0caa65d0e93edcf3658bee9f8 Reviewed-by: Fabian Kosmale <fabian.kosmale@qt.io> Reviewed-by: Lars Knoll <lars.knoll@qt.io>
This commit is contained in:
parent
9082cc8e8d
commit
2b8674a2fc
@ -254,5 +254,99 @@ Q_CORE_EXPORT quint64 qFloatDistance(double a, double b)
|
||||
return a > b ? d2i(a) - d2i(b) : d2i(b) - d2i(a);
|
||||
}
|
||||
|
||||
/*!
|
||||
\fn template<typename T> bool qAddOverflow(T v1, T v2, T *result)
|
||||
\since 6.1
|
||||
|
||||
Adds two values \a v1 and \a v2, of a numeric type \c T and records the
|
||||
value in \a result. If the addition overflows the valid range for type \c T,
|
||||
returns \c true, otherwise returns \c false.
|
||||
|
||||
An implementation is guaranteed to be available for 8-, 16-, and 32-bit
|
||||
integer types, as well as integer types of the size of a pointer. Overflow
|
||||
math for other types, if available, is considered private API.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template <typename T, T V2> bool qAddOverflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
\since 6.1
|
||||
\internal
|
||||
|
||||
Equivalent to qAddOverflow(v1, v2, r) with \a v1 as first argument, the
|
||||
compile time constant \c V2 as second argument, and \a r as third argument.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template <auto V2, typename T> bool qAddOverflow(T v1, T *r)
|
||||
\since 6.1
|
||||
\internal
|
||||
|
||||
Equivalent to qAddOverflow(v1, v2, r) with \a v1 as first argument, the
|
||||
compile time constant \c V2 as second argument, and \a r as third argument.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template<typename T> bool qSubOverflow(T v1, T v2, T *result)
|
||||
\since 6.1
|
||||
|
||||
Subtracts \a v2 from \a v1 and records the resulting value in \a result. If
|
||||
the subtraction overflows the valid range for type \c T, returns \c true,
|
||||
otherwise returns \c false.
|
||||
|
||||
An implementation is guaranteed to be available for 8-, 16-, and 32-bit
|
||||
integer types, as well as integer types of the size of a pointer. Overflow
|
||||
math for other types, if available, is considered private API.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template <typename T, T V2> bool qSubOverflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
\since 6.1
|
||||
\internal
|
||||
|
||||
Equivalent to qSubOverflow(v1, v2, r) with \a v1 as first argument, the
|
||||
compile time constant \c V2 as second argument, and \a r as third argument.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template <auto V2, typename T> bool qSubOverflow(T v1, T *r)
|
||||
\since 6.1
|
||||
\internal
|
||||
|
||||
Equivalent to qSubOverflow(v1, v2, r) with \a v1 as first argument, the
|
||||
compile time constant \c V2 as second argument, and \a r as third argument.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template<typename T> bool qMulOverflow(T v1, T v2, T *result)
|
||||
\since 6.1
|
||||
|
||||
Multiplies \a v1 and \a v2, and records the resulting value in \a result. If
|
||||
the multiplication overflows the valid range for type \c T, returns
|
||||
\c true, otherwise returns \c false.
|
||||
|
||||
An implementation is guaranteed to be available for 8-, 16-, and 32-bit
|
||||
integer types, as well as integer types of the size of a pointer. Overflow
|
||||
math for other types, if available, is considered private API.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template <typename T, T V2> bool qMulOverflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
\since 6.1
|
||||
\internal
|
||||
|
||||
Equivalent to qMulOverflow(v1, v2, r) with \a v1 as first argument, the
|
||||
compile time constant \c V2 as second argument, and \a r as third argument.
|
||||
This can be faster than calling the version with only variable arguments.
|
||||
*/
|
||||
|
||||
/*!
|
||||
\fn template <auto V2, typename T> bool qMulOverflow(T v1, T *r)
|
||||
\since 6.1
|
||||
\internal
|
||||
|
||||
Equivalent to qMulOverflow(v1, v2, r) with \a v1 as first argument, the
|
||||
compile time constant \c V2 as second argument, and \a r as third argument.
|
||||
This can be faster than calling the version with only variable arguments.
|
||||
*/
|
||||
|
||||
QT_END_NAMESPACE
|
||||
|
@ -41,6 +41,35 @@
|
||||
#define QNUMERIC_H
|
||||
|
||||
#include <QtCore/qglobal.h>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <type_traits>
|
||||
|
||||
// min() and max() may be #defined by windows.h if that is included before, but we need them
|
||||
// for std::numeric_limits below. You should not use the min() and max() macros, so we just #undef.
|
||||
#ifdef min
|
||||
# undef min
|
||||
# undef max
|
||||
#endif
|
||||
|
||||
#if defined(Q_CC_MSVC)
|
||||
# include <intrin.h>
|
||||
# include <float.h>
|
||||
# if defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_ARM_64)
|
||||
# define Q_INTRINSIC_MUL_OVERFLOW64
|
||||
# define Q_UMULH(v1, v2) __umulh(v1, v2);
|
||||
# define Q_SMULH(v1, v2) __mulh(v1, v2);
|
||||
# pragma intrinsic(__umulh)
|
||||
# pragma intrinsic(__mulh)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
# if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
|
||||
# include <arm64_ghs.h>
|
||||
# define Q_INTRINSIC_MUL_OVERFLOW64
|
||||
# define Q_UMULH(v1, v2) __MULUH64(v1, v2);
|
||||
# define Q_SMULH(v1, v2) __MULSH64(v1, v2);
|
||||
#endif
|
||||
|
||||
QT_BEGIN_NAMESPACE
|
||||
|
||||
@ -67,6 +96,247 @@ Q_CORE_EXPORT quint64 qFloatDistance(double a, double b);
|
||||
#endif
|
||||
#define Q_QNAN (QT_PREPEND_NAMESPACE(qQNaN)())
|
||||
|
||||
// Overflow math.
|
||||
// This provides efficient implementations for int, unsigned, qsizetype and
|
||||
// size_t. Implementations for 8- and 16-bit types will work but may not be as
|
||||
// efficient. Implementations for 64-bit may be missing on 32-bit platforms.
|
||||
|
||||
#if ((defined(Q_CC_INTEL) ? (Q_CC_INTEL >= 1800 && !defined(Q_OS_WIN)) : defined(Q_CC_GNU)) \
|
||||
&& Q_CC_GNU >= 500) || __has_builtin(__builtin_add_overflow)
|
||||
// GCC 5, ICC 18, and Clang 3.8 have builtins to detect overflows
|
||||
#define Q_INTRINSIC_MUL_OVERFLOW64
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
|
||||
qAddOverflow(T v1, T v2, T *r)
|
||||
{ return __builtin_add_overflow(v1, v2, r); }
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
|
||||
qSubOverflow(T v1, T v2, T *r)
|
||||
{ return __builtin_sub_overflow(v1, v2, r); }
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
|
||||
qMulOverflow(T v1, T v2, T *r)
|
||||
{ return __builtin_mul_overflow(v1, v2, r); }
|
||||
|
||||
#else
|
||||
// Generic implementations
|
||||
|
||||
template <typename T> inline typename std::enable_if_t<std::is_unsigned_v<T>, bool>
|
||||
qAddOverflow(T v1, T v2, T *r)
|
||||
{
|
||||
// unsigned additions are well-defined
|
||||
*r = v1 + v2;
|
||||
return v1 > T(v1 + v2);
|
||||
}
|
||||
|
||||
template <typename T> inline typename std::enable_if_t<std::is_signed_v<T>, bool>
|
||||
qAddOverflow(T v1, T v2, T *r)
|
||||
{
|
||||
// Here's how we calculate the overflow:
|
||||
// 1) unsigned addition is well-defined, so we can always execute it
|
||||
// 2) conversion from unsigned back to signed is implementation-
|
||||
// defined and in the implementations we use, it's a no-op.
|
||||
// 3) signed integer overflow happens if the sign of the two input operands
|
||||
// is the same but the sign of the result is different. In other words,
|
||||
// the sign of the result must be the same as the sign of either
|
||||
// operand.
|
||||
|
||||
using U = typename std::make_unsigned_t<T>;
|
||||
*r = T(U(v1) + U(v2));
|
||||
|
||||
// If int is two's complement, assume all integer types are too.
|
||||
if (std::is_same_v<int32_t, int>) {
|
||||
// Two's complement equivalent (generates slightly shorter code):
|
||||
// x ^ y is negative if x and y have different signs
|
||||
// x & y is negative if x and y are negative
|
||||
// (x ^ z) & (y ^ z) is negative if x and z have different signs
|
||||
// AND y and z have different signs
|
||||
return ((v1 ^ *r) & (v2 ^ *r)) < 0;
|
||||
}
|
||||
|
||||
bool s1 = (v1 < 0);
|
||||
bool s2 = (v2 < 0);
|
||||
bool sr = (*r < 0);
|
||||
return s1 != sr && s2 != sr;
|
||||
// also: return s1 == s2 && s1 != sr;
|
||||
}
|
||||
|
||||
template <typename T> inline typename std::enable_if_t<std::is_unsigned_v<T>, bool>
|
||||
qSubOverflow(T v1, T v2, T *r)
|
||||
{
|
||||
// unsigned subtractions are well-defined
|
||||
*r = v1 - v2;
|
||||
return v1 < v2;
|
||||
}
|
||||
|
||||
template <typename T> inline typename std::enable_if_t<std::is_signed_v<T>, bool>
|
||||
qSubOverflow(T v1, T v2, T *r)
|
||||
{
|
||||
// See above for explanation. This is the same with some signs reversed.
|
||||
// We can't use qAddOverflow(v1, -v2, r) because it would be UB if
|
||||
// v2 == std::numeric_limits<T>::min().
|
||||
|
||||
using U = typename std::make_unsigned_t<T>;
|
||||
*r = T(U(v1) - U(v2));
|
||||
|
||||
if (std::is_same_v<int32_t, int>)
|
||||
return ((v1 ^ *r) & (~v2 ^ *r)) < 0;
|
||||
|
||||
bool s1 = (v1 < 0);
|
||||
bool s2 = !(v2 < 0);
|
||||
bool sr = (*r < 0);
|
||||
return s1 != sr && s2 != sr;
|
||||
// also: return s1 == s2 && s1 != sr;
|
||||
}
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if_t<std::is_unsigned_v<T> || std::is_signed_v<T>, bool>
|
||||
qMulOverflow(T v1, T v2, T *r)
|
||||
{
|
||||
// use the next biggest type
|
||||
// Note: for 64-bit systems where __int128 isn't supported, this will cause an error.
|
||||
using LargerInt = QIntegerForSize<sizeof(T) * 2>;
|
||||
using Larger = typename std::conditional_t<std::is_signed_v<T>,
|
||||
typename LargerInt::Signed, typename LargerInt::Unsigned>;
|
||||
Larger lr = Larger(v1) * Larger(v2);
|
||||
*r = T(lr);
|
||||
return lr > std::numeric_limits<T>::max() || lr < std::numeric_limits<T>::min();
|
||||
}
|
||||
|
||||
# if defined(Q_INTRINSIC_MUL_OVERFLOW64)
|
||||
template <> inline bool qMulOverflow(quint64 v1, quint64 v2, quint64 *r)
|
||||
{
|
||||
*r = v1 * v2;
|
||||
return Q_UMULH(v1, v2);
|
||||
}
|
||||
template <> inline bool qMulOverflow(qint64 v1, qint64 v2, qint64 *r)
|
||||
{
|
||||
// This is slightly more complex than the unsigned case above: the sign bit
|
||||
// of 'low' must be replicated as the entire 'high', so the only valid
|
||||
// values for 'high' are 0 and -1. Use unsigned multiply since it's the same
|
||||
// as signed for the low bits and use a signed right shift to verify that
|
||||
// 'high' is nothing but sign bits that match the sign of 'low'.
|
||||
|
||||
qint64 high = Q_SMULH(v1, v2);
|
||||
*r = qint64(quint64(v1) * quint64(v2));
|
||||
return (*r >> 63) != high;
|
||||
}
|
||||
|
||||
# if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
|
||||
template <> inline bool qMulOverflow(uint64_t v1, uint64_t v2, uint64_t *r)
|
||||
{
|
||||
return qMulOverflow<quint64>(v1,v2,reinterpret_cast<quint64*>(r));
|
||||
}
|
||||
|
||||
template <> inline bool qMulOverflow(int64_t v1, int64_t v2, int64_t *r)
|
||||
{
|
||||
return qMulOverflow<qint64>(v1,v2,reinterpret_cast<qint64*>(r));
|
||||
}
|
||||
# endif // OS_INTEGRITY ARM64
|
||||
# endif // Q_INTRINSIC_MUL_OVERFLOW64
|
||||
|
||||
# if defined(Q_CC_MSVC) && defined(Q_PROCESSOR_X86)
|
||||
// We can use intrinsics for the unsigned operations with MSVC
|
||||
template <> inline bool qAddOverflow(unsigned v1, unsigned v2, unsigned *r)
|
||||
{ return _addcarry_u32(0, v1, v2, r); }
|
||||
|
||||
// 32-bit qMulOverflow is fine with the generic code above
|
||||
|
||||
template <> inline bool qAddOverflow(quint64 v1, quint64 v2, quint64 *r)
|
||||
{
|
||||
# if defined(Q_PROCESSOR_X86_64)
|
||||
return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r));
|
||||
# else
|
||||
uint low, high;
|
||||
uchar carry = _addcarry_u32(0, unsigned(v1), unsigned(v2), &low);
|
||||
carry = _addcarry_u32(carry, v1 >> 32, v2 >> 32, &high);
|
||||
*r = (quint64(high) << 32) | low;
|
||||
return carry;
|
||||
# endif // !x86-64
|
||||
}
|
||||
# endif // MSVC X86
|
||||
#endif // !GCC
|
||||
|
||||
// Implementations for addition, subtraction or multiplication by a
|
||||
// compile-time constant. For addition and subtraction, we simply call the code
|
||||
// that detects overflow at runtime. For multiplication, we compare to the
|
||||
// maximum possible values before multiplying to ensure no overflow happens.
|
||||
|
||||
template <typename T, T V2> bool qAddOverflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
{
|
||||
return qAddOverflow(v1, V2, r);
|
||||
}
|
||||
|
||||
template <auto V2, typename T> bool qAddOverflow(T v1, T *r)
|
||||
{
|
||||
return qAddOverflow(v1, std::integral_constant<T, V2>{}, r);
|
||||
}
|
||||
|
||||
template <typename T, T V2> bool qSubOverflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
{
|
||||
return qSubOverflow(v1, V2, r);
|
||||
}
|
||||
|
||||
template <auto V2, typename T> bool qSubOverflow(T v1, T *r)
|
||||
{
|
||||
return qSubOverflow(v1, std::integral_constant<T, V2>{}, r);
|
||||
}
|
||||
|
||||
template <typename T, T V2> bool qMulOverflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
{
|
||||
// Runtime detection for anything smaller than or equal to a register
|
||||
// width, as most architectures' multiplication instructions actually
|
||||
// produce a result twice as wide as the input registers, allowing us to
|
||||
// efficiently detect the overflow.
|
||||
if constexpr (sizeof(T) <= sizeof(qregisteruint)) {
|
||||
return qMulOverflow(v1, V2, r);
|
||||
|
||||
#ifdef Q_INTRINSIC_MUL_OVERFLOW64
|
||||
} else if constexpr (sizeof(T) <= sizeof(quint64)) {
|
||||
// If we have intrinsics detecting overflow of 64-bit multiplications,
|
||||
// then detect overflows through them up to 64 bits.
|
||||
return qMulOverflow(v1, V2, r);
|
||||
#endif
|
||||
|
||||
} else if constexpr (V2 == 0 || V2 == 1) {
|
||||
// trivial cases (and simplify logic below due to division by zero)
|
||||
*r = v1 * V2;
|
||||
return false;
|
||||
} else if constexpr (V2 == -1) {
|
||||
// multiplication by -1 is valid *except* for signed minimum values
|
||||
// (necessary to avoid diving min() by -1, which is an overflow)
|
||||
if (v1 < 0 && v1 == std::numeric_limits<T>::min())
|
||||
return true;
|
||||
*r = -v1;
|
||||
return false;
|
||||
} else {
|
||||
// For 64-bit multiplications on 32-bit platforms, let's instead compare v1
|
||||
// against the bounds that would overflow.
|
||||
constexpr T Highest = std::numeric_limits<T>::max() / V2;
|
||||
constexpr T Lowest = std::numeric_limits<T>::min() / V2;
|
||||
if constexpr (Highest > Lowest) {
|
||||
if (v1 > Highest || v1 < Lowest)
|
||||
return true;
|
||||
} else {
|
||||
// this can only happen if V2 < 0
|
||||
static_assert(V2 < 0);
|
||||
if (v1 > Lowest || v1 < Highest)
|
||||
return true;
|
||||
}
|
||||
|
||||
*r = v1 * V2;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
template <auto V2, typename T> bool qMulOverflow(T v1, T *r)
|
||||
{
|
||||
return qMulOverflow(v1, std::integral_constant<T, V2>{}, r);
|
||||
}
|
||||
|
||||
QT_END_NAMESPACE
|
||||
|
||||
#endif // QNUMERIC_H
|
||||
|
@ -53,29 +53,11 @@
|
||||
//
|
||||
|
||||
#include "QtCore/private/qglobal_p.h"
|
||||
#include "QtCore/qnumeric.h"
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <type_traits>
|
||||
|
||||
#if defined(Q_CC_MSVC)
|
||||
# include <intrin.h>
|
||||
# include <float.h>
|
||||
# if defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_ARM_64)
|
||||
# define Q_INTRINSIC_MUL_OVERFLOW64
|
||||
# define Q_UMULH(v1, v2) __umulh(v1, v2);
|
||||
# define Q_SMULH(v1, v2) __mulh(v1, v2);
|
||||
# pragma intrinsic(__umulh)
|
||||
# pragma intrinsic(__mulh)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
# if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
|
||||
#include <arm64_ghs.h>
|
||||
# define Q_INTRINSIC_MUL_OVERFLOW64
|
||||
# define Q_UMULH(v1, v2) __MULUH64(v1, v2);
|
||||
# define Q_SMULH(v1, v2) __MULSH64(v1, v2);
|
||||
#endif
|
||||
|
||||
#if !defined(Q_CC_MSVC) && (defined(Q_OS_QNX) || defined(Q_CC_INTEL))
|
||||
# include <math.h>
|
||||
# ifdef isnan
|
||||
@ -249,245 +231,38 @@ QT_WARNING_DISABLE_FLOAT_COMPARE
|
||||
QT_WARNING_POP
|
||||
}
|
||||
|
||||
// Overflow math.
|
||||
// This provides efficient implementations for int, unsigned, qsizetype and
|
||||
// size_t. Implementations for 8- and 16-bit types will work but may not be as
|
||||
// efficient. Implementations for 64-bit may be missing on 32-bit platforms.
|
||||
|
||||
#if ((defined(Q_CC_INTEL) ? (Q_CC_INTEL >= 1800 && !defined(Q_OS_WIN)) : defined(Q_CC_GNU)) \
|
||||
&& Q_CC_GNU >= 500) || __has_builtin(__builtin_add_overflow)
|
||||
// GCC 5, ICC 18, and Clang 3.8 have builtins to detect overflows
|
||||
#define Q_INTRINSIC_MUL_OVERFLOW64
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
|
||||
add_overflow(T v1, T v2, T *r)
|
||||
{ return __builtin_add_overflow(v1, v2, r); }
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
|
||||
sub_overflow(T v1, T v2, T *r)
|
||||
{ return __builtin_sub_overflow(v1, v2, r); }
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
|
||||
mul_overflow(T v1, T v2, T *r)
|
||||
{ return __builtin_mul_overflow(v1, v2, r); }
|
||||
|
||||
#else
|
||||
// Generic implementations
|
||||
|
||||
template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type
|
||||
add_overflow(T v1, T v2, T *r)
|
||||
{
|
||||
// unsigned additions are well-defined
|
||||
*r = v1 + v2;
|
||||
return v1 > T(v1 + v2);
|
||||
}
|
||||
|
||||
template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type
|
||||
add_overflow(T v1, T v2, T *r)
|
||||
{
|
||||
// Here's how we calculate the overflow:
|
||||
// 1) unsigned addition is well-defined, so we can always execute it
|
||||
// 2) conversion from unsigned back to signed is implementation-
|
||||
// defined and in the implementations we use, it's a no-op.
|
||||
// 3) signed integer overflow happens if the sign of the two input operands
|
||||
// is the same but the sign of the result is different. In other words,
|
||||
// the sign of the result must be the same as the sign of either
|
||||
// operand.
|
||||
|
||||
using U = typename std::make_unsigned<T>::type;
|
||||
*r = T(U(v1) + U(v2));
|
||||
|
||||
// If int is two's complement, assume all integer types are too.
|
||||
if (std::is_same<int32_t, int>::value) {
|
||||
// Two's complement equivalent (generates slightly shorter code):
|
||||
// x ^ y is negative if x and y have different signs
|
||||
// x & y is negative if x and y are negative
|
||||
// (x ^ z) & (y ^ z) is negative if x and z have different signs
|
||||
// AND y and z have different signs
|
||||
return ((v1 ^ *r) & (v2 ^ *r)) < 0;
|
||||
}
|
||||
|
||||
bool s1 = (v1 < 0);
|
||||
bool s2 = (v2 < 0);
|
||||
bool sr = (*r < 0);
|
||||
return s1 != sr && s2 != sr;
|
||||
// also: return s1 == s2 && s1 != sr;
|
||||
}
|
||||
|
||||
template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type
|
||||
sub_overflow(T v1, T v2, T *r)
|
||||
{
|
||||
// unsigned subtractions are well-defined
|
||||
*r = v1 - v2;
|
||||
return v1 < v2;
|
||||
}
|
||||
|
||||
template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type
|
||||
sub_overflow(T v1, T v2, T *r)
|
||||
{
|
||||
// See above for explanation. This is the same with some signs reversed.
|
||||
// We can't use add_overflow(v1, -v2, r) because it would be UB if
|
||||
// v2 == std::numeric_limits<T>::min().
|
||||
|
||||
using U = typename std::make_unsigned<T>::type;
|
||||
*r = T(U(v1) - U(v2));
|
||||
|
||||
if (std::is_same<int32_t, int>::value)
|
||||
return ((v1 ^ *r) & (~v2 ^ *r)) < 0;
|
||||
|
||||
bool s1 = (v1 < 0);
|
||||
bool s2 = !(v2 < 0);
|
||||
bool sr = (*r < 0);
|
||||
return s1 != sr && s2 != sr;
|
||||
// also: return s1 == s2 && s1 != sr;
|
||||
}
|
||||
|
||||
template <typename T> inline
|
||||
typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type
|
||||
mul_overflow(T v1, T v2, T *r)
|
||||
{
|
||||
// use the next biggest type
|
||||
// Note: for 64-bit systems where __int128 isn't supported, this will cause an error.
|
||||
using LargerInt = QIntegerForSize<sizeof(T) * 2>;
|
||||
using Larger = typename std::conditional<std::is_signed<T>::value,
|
||||
typename LargerInt::Signed, typename LargerInt::Unsigned>::type;
|
||||
Larger lr = Larger(v1) * Larger(v2);
|
||||
*r = T(lr);
|
||||
return lr > std::numeric_limits<T>::max() || lr < std::numeric_limits<T>::min();
|
||||
}
|
||||
|
||||
# if defined(Q_INTRINSIC_MUL_OVERFLOW64)
|
||||
template <> inline bool mul_overflow(quint64 v1, quint64 v2, quint64 *r)
|
||||
{
|
||||
*r = v1 * v2;
|
||||
return Q_UMULH(v1, v2);
|
||||
}
|
||||
template <> inline bool mul_overflow(qint64 v1, qint64 v2, qint64 *r)
|
||||
{
|
||||
// This is slightly more complex than the unsigned case above: the sign bit
|
||||
// of 'low' must be replicated as the entire 'high', so the only valid
|
||||
// values for 'high' are 0 and -1. Use unsigned multiply since it's the same
|
||||
// as signed for the low bits and use a signed right shift to verify that
|
||||
// 'high' is nothing but sign bits that match the sign of 'low'.
|
||||
|
||||
qint64 high = Q_SMULH(v1, v2);
|
||||
*r = qint64(quint64(v1) * quint64(v2));
|
||||
return (*r >> 63) != high;
|
||||
}
|
||||
|
||||
# if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64)
|
||||
template <> inline bool mul_overflow(uint64_t v1, uint64_t v2, uint64_t *r)
|
||||
{
|
||||
return mul_overflow<quint64>(v1,v2,reinterpret_cast<quint64*>(r));
|
||||
}
|
||||
|
||||
template <> inline bool mul_overflow(int64_t v1, int64_t v2, int64_t *r)
|
||||
{
|
||||
return mul_overflow<qint64>(v1,v2,reinterpret_cast<qint64*>(r));
|
||||
}
|
||||
# endif // OS_INTEGRITY ARM64
|
||||
# endif // Q_INTRINSIC_MUL_OVERFLOW64
|
||||
|
||||
# if defined(Q_CC_MSVC) && defined(Q_PROCESSOR_X86)
|
||||
// We can use intrinsics for the unsigned operations with MSVC
|
||||
template <> inline bool add_overflow(unsigned v1, unsigned v2, unsigned *r)
|
||||
{ return _addcarry_u32(0, v1, v2, r); }
|
||||
|
||||
// 32-bit mul_overflow is fine with the generic code above
|
||||
|
||||
template <> inline bool add_overflow(quint64 v1, quint64 v2, quint64 *r)
|
||||
{
|
||||
# if defined(Q_PROCESSOR_X86_64)
|
||||
return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r));
|
||||
# else
|
||||
uint low, high;
|
||||
uchar carry = _addcarry_u32(0, unsigned(v1), unsigned(v2), &low);
|
||||
carry = _addcarry_u32(carry, v1 >> 32, v2 >> 32, &high);
|
||||
*r = (quint64(high) << 32) | low;
|
||||
return carry;
|
||||
# endif // !x86-64
|
||||
}
|
||||
# endif // MSVC X86
|
||||
#endif // !GCC
|
||||
|
||||
// Implementations for addition, subtraction or multiplication by a
|
||||
// compile-time constant. For addition and subtraction, we simply call the code
|
||||
// that detects overflow at runtime. For multiplication, we compare to the
|
||||
// maximum possible values before multiplying to ensure no overflow happens.
|
||||
template <typename T> inline bool add_overflow(T v1, T v2, T *r) { return qAddOverflow(v1, v2, r); }
|
||||
template <typename T> inline bool sub_overflow(T v1, T v2, T *r) { return qSubOverflow(v1, v2, r); }
|
||||
template <typename T> inline bool mul_overflow(T v1, T v2, T *r) { return qMulOverflow(v1, v2, r); }
|
||||
|
||||
template <typename T, T V2> bool add_overflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
{
|
||||
return add_overflow(v1, V2, r);
|
||||
return qAddOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
|
||||
}
|
||||
|
||||
template <auto V2, typename T> bool add_overflow(T v1, T *r)
|
||||
{
|
||||
return add_overflow(v1, std::integral_constant<T, V2>{}, r);
|
||||
return qAddOverflow<V2, T>(v1, r);
|
||||
}
|
||||
|
||||
template <typename T, T V2> bool sub_overflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
{
|
||||
return sub_overflow(v1, V2, r);
|
||||
return qSubOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
|
||||
}
|
||||
|
||||
template <auto V2, typename T> bool sub_overflow(T v1, T *r)
|
||||
{
|
||||
return sub_overflow(v1, std::integral_constant<T, V2>{}, r);
|
||||
return qSubOverflow<V2, T>(v1, r);
|
||||
}
|
||||
|
||||
template <typename T, T V2> bool mul_overflow(T v1, std::integral_constant<T, V2>, T *r)
|
||||
{
|
||||
// Runtime detection for anything smaller than or equal to a register
|
||||
// width, as most architectures' multiplication instructions actually
|
||||
// produce a result twice as wide as the input registers, allowing us to
|
||||
// efficiently detect the overflow.
|
||||
if constexpr (sizeof(T) <= sizeof(qregisteruint)) {
|
||||
return mul_overflow(v1, V2, r);
|
||||
|
||||
#ifdef Q_INTRINSIC_MUL_OVERFLOW64
|
||||
} else if constexpr (sizeof(T) <= sizeof(quint64)) {
|
||||
// If we have intrinsics detecting overflow of 64-bit multiplications,
|
||||
// then detect overflows through them up to 64 bits.
|
||||
return mul_overflow(v1, V2, r);
|
||||
#endif
|
||||
|
||||
} else if constexpr (V2 == 0 || V2 == 1) {
|
||||
// trivial cases (and simplify logic below due to division by zero)
|
||||
*r = v1 * V2;
|
||||
return false;
|
||||
} else if constexpr (V2 == -1) {
|
||||
// multiplication by -1 is valid *except* for signed minimum values
|
||||
// (necessary to avoid diving min() by -1, which is an overflow)
|
||||
if (v1 < 0 && v1 == std::numeric_limits<T>::min())
|
||||
return true;
|
||||
*r = -v1;
|
||||
return false;
|
||||
} else {
|
||||
// For 64-bit multiplications on 32-bit platforms, let's instead compare v1
|
||||
// against the bounds that would overflow.
|
||||
constexpr T Highest = std::numeric_limits<T>::max() / V2;
|
||||
constexpr T Lowest = std::numeric_limits<T>::min() / V2;
|
||||
if constexpr (Highest > Lowest) {
|
||||
if (v1 > Highest || v1 < Lowest)
|
||||
return true;
|
||||
} else {
|
||||
// this can only happen if V2 < 0
|
||||
static_assert(V2 < 0);
|
||||
if (v1 > Lowest || v1 < Highest)
|
||||
return true;
|
||||
}
|
||||
|
||||
*r = v1 * V2;
|
||||
return false;
|
||||
}
|
||||
return qMulOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
|
||||
}
|
||||
|
||||
template <auto V2, typename T> bool mul_overflow(T v1, T *r)
|
||||
{
|
||||
return mul_overflow(v1, std::integral_constant<T, V2>{}, r);
|
||||
return qMulOverflow<V2, T>(v1, r);
|
||||
}
|
||||
}
|
||||
#endif // Q_CLANG_QDOC
|
||||
|
Loading…
x
Reference in New Issue
Block a user