Merge pull request #240 from Daniel-Cortez/ht-patch

New hashtable implementation
This commit is contained in:
Southclaws 2018-01-07 12:45:40 +00:00 committed by GitHub
commit a47bd9de76
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 995 additions and 1051 deletions

View File

@ -68,8 +68,9 @@ include_directories(${CMAKE_CURRENT_BINARY_DIR})
# The Pawn compiler shared library # The Pawn compiler shared library
set(PAWNC_SRCS set(PAWNC_SRCS
hashmap/hashmap.c hashtable/wrap_hashtable.c
hashmap/hashmap.h hashtable/wrap_hashtable.h
hashtable/hashtable.h
libpawnc.c libpawnc.c
lstring.c lstring.c
lstring.h lstring.h

View File

@ -1,21 +0,0 @@
MIT License
Copyright (c) 2016 David Leeds
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,689 +0,0 @@
/*
* Copyright (c) 2016-2017 David Leeds <davidesleeds@gmail.com>
*
* Hashmap is free software; you can redistribute it and/or modify
* it under the terms of the MIT license. See LICENSE for details.
*/
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "hashmap.h"
#ifndef HASHMAP_NOASSERT
#include <assert.h>
#define HASHMAP_ASSERT(expr) assert(expr)
#else
#define HASHMAP_ASSERT(expr)
#endif
/* Table sizes must be powers of 2 */
#define HASHMAP_SIZE_MIN (1 << 5) /* 32 */
#define HASHMAP_SIZE_DEFAULT (1 << 8) /* 256 */
#define HASHMAP_SIZE_MOD(map, val) ((val) & ((map)->table_size - 1))
/* Limit for probing is 1/2 of table_size */
#define HASHMAP_PROBE_LEN(map) ((map)->table_size >> 1)
/* Return the next linear probe index */
#define HASHMAP_PROBE_NEXT(map, index) HASHMAP_SIZE_MOD(map, (index) + 1)
/* Check if index b is less than or equal to index a */
#define HASHMAP_INDEX_LE(map, a, b) \
((a) == (b) || (((b) - (a)) & ((map)->table_size >> 1)) != 0)
struct hashmap_entry {
void *key;
void *data;
#ifdef HASHMAP_METRICS
size_t num_collisions;
#endif
};
/*
* Enforce a maximum 0.75 load factor.
*/
static inline size_t hashmap_table_min_size_calc(size_t num_entries)
{
return num_entries + (num_entries / 3);
}
/*
* Calculate the optimal table size, given the specified max number
* of elements.
*/
static size_t hashmap_table_size_calc(size_t num_entries)
{
size_t table_size;
size_t min_size;
table_size = hashmap_table_min_size_calc(num_entries);
/* Table size is always a power of 2 */
min_size = HASHMAP_SIZE_MIN;
while (min_size < table_size) {
min_size <<= 1;
}
return min_size;
}
/*
* Get a valid hash table index from a key.
*/
static inline size_t hashmap_calc_index(const struct hashmap *map,
const void *key)
{
return HASHMAP_SIZE_MOD(map, map->hash(key));
}
/*
* Return the next populated entry, starting with the specified one.
* Returns NULL if there are no more valid entries.
*/
static struct hashmap_entry *hashmap_entry_get_populated(
const struct hashmap *map, struct hashmap_entry *entry)
{
for (; entry < &map->table[map->table_size]; ++entry) {
if (entry->key) {
return entry;
}
}
return NULL;
}
/*
* Find the hashmap entry with the specified key, or an empty slot.
* Returns NULL if the entire table has been searched without finding a match.
*/
static struct hashmap_entry *hashmap_entry_find(const struct hashmap *map,
const void *key, bool find_empty)
{
size_t i;
size_t index;
size_t probe_len = HASHMAP_PROBE_LEN(map);
struct hashmap_entry *entry;
index = hashmap_calc_index(map, key);
/* Linear probing */
for (i = 0; i < probe_len; ++i) {
entry = &map->table[index];
if (!entry->key) {
if (find_empty) {
#ifdef HASHMAP_METRICS
entry->num_collisions = i;
#endif
return entry;
}
return NULL;
}
if (map->key_compare(key, entry->key) == 0) {
return entry;
}
index = HASHMAP_PROBE_NEXT(map, index);
}
return NULL;
}
/*
* Removes the specified entry and processes the proceeding entries to reduce
* the load factor and keep the chain continuous. This is a required
* step for hash maps using linear probing.
*/
static void hashmap_entry_remove(struct hashmap *map,
struct hashmap_entry *removed_entry)
{
size_t i;
#ifdef HASHMAP_METRICS
size_t removed_i = 0;
#endif
size_t index;
size_t entry_index;
size_t removed_index = (removed_entry - map->table);
struct hashmap_entry *entry;
/* Free the key */
if (map->key_free) {
map->key_free(removed_entry->key);
}
--map->num_entries;
/* Fill the free slot in the chain */
index = HASHMAP_PROBE_NEXT(map, removed_index);
for (i = 1; i < map->table_size; ++i) {
entry = &map->table[index];
if (!entry->key) {
/* Reached end of chain */
break;
}
entry_index = hashmap_calc_index(map, entry->key);
/* Shift in entries with an index <= to the removed slot */
if (HASHMAP_INDEX_LE(map, removed_index, entry_index)) {
#ifdef HASHMAP_METRICS
entry->num_collisions -= (i - removed_i);
removed_i = i;
#endif
memcpy(removed_entry, entry, sizeof(*removed_entry));
removed_index = index;
removed_entry = entry;
}
index = HASHMAP_PROBE_NEXT(map, index);
}
/* Clear the last removed entry */
memset(removed_entry, 0, sizeof(*removed_entry));
}
/*
* Reallocates the hash table to the new size and rehashes all entries.
* new_size MUST be a power of 2.
* Returns 0 on success and -1 on allocation or hash function failure.
*/
static int hashmap_rehash(struct hashmap *map, size_t new_size)
{
size_t old_size;
struct hashmap_entry *old_table;
struct hashmap_entry *new_table;
struct hashmap_entry *entry;
struct hashmap_entry *new_entry;
HASHMAP_ASSERT(new_size >= HASHMAP_SIZE_MIN);
HASHMAP_ASSERT((new_size & (new_size - 1)) == 0);
new_table = (struct hashmap_entry *)calloc(new_size,
sizeof(struct hashmap_entry));
if (!new_table) {
return -1;
}
/* Backup old elements in case of rehash failure */
old_size = map->table_size;
old_table = map->table;
map->table_size = new_size;
map->table = new_table;
/* Rehash */
for (entry = old_table; entry < &old_table[old_size]; ++entry) {
if (!entry->data) {
/* Only copy entries with data */
continue;
}
new_entry = hashmap_entry_find(map, entry->key, true);
if (!new_entry) {
/*
* The load factor is still too high with the new table
* size, or a poor hash function was used.
*/
goto revert;
}
/* Shallow copy (intentionally omits num_collisions) */
new_entry->key = entry->key;
new_entry->data = entry->data;
}
free(old_table);
return 0;
revert:
map->table_size = old_size;
map->table = old_table;
free(new_table);
return -1;
}
/*
* Iterate through all entries and free all keys.
*/
static void hashmap_free_keys(struct hashmap *map)
{
struct hashmap_iter *iter;
if (!map->key_free) {
return;
}
for (iter = hashmap_iter(map); iter;
iter = hashmap_iter_next(map, iter)) {
map->key_free((void *)hashmap_iter_get_key(iter));
}
}
/*
* Initialize an empty hashmap. A hash function and a key comparator are
* required.
*
* hash_func should return an even distribution of numbers between 0
* and SIZE_MAX varying on the key provided.
*
* key_compare_func should return 0 if the keys match, and non-zero otherwise.
*
* initial_size is optional, and may be set to the max number of entries
* expected to be put in the hash table. This is used as a hint to
* pre-allocate the hash table to the minimum size needed to avoid
* gratuitous rehashes. If initial_size 0, a default size will be used.
*/
int hashmap_init(struct hashmap *map, size_t (*hash_func)(const void *),
int (*key_compare_func)(const void *, const void *),
size_t initial_size)
{
HASHMAP_ASSERT(map != NULL);
HASHMAP_ASSERT(hash_func != NULL);
HASHMAP_ASSERT(key_compare_func != NULL);
if (!initial_size) {
initial_size = HASHMAP_SIZE_DEFAULT;
} else {
/* Convert init size to valid table size */
initial_size = hashmap_table_size_calc(initial_size);
}
map->table_size_init = initial_size;
map->table_size = initial_size;
map->num_entries = 0;
map->table = (struct hashmap_entry *)calloc(initial_size,
sizeof(struct hashmap_entry));
if (!map->table) {
return -1;
}
map->hash = hash_func;
map->key_compare = key_compare_func;
map->key_alloc = NULL;
map->key_free = NULL;
return 0;
}
/*
* Free the hashmap and all associated memory.
*/
void hashmap_destroy(struct hashmap *map)
{
if (!map) {
return;
}
hashmap_free_keys(map);
free(map->table);
memset(map, 0, sizeof(*map));
}
/*
* Enable internal memory management of hash keys.
*/
void hashmap_set_key_alloc_funcs(struct hashmap *map,
void *(*key_alloc_func)(const void *),
void (*key_free_func)(void *))
{
HASHMAP_ASSERT(map != NULL);
map->key_alloc = key_alloc_func;
map->key_free = key_free_func;
}
/*
* Add an entry to the hashmap. If an entry with a matching key already
* exists and has a data pointer associated with it, the existing data
* pointer is returned, instead of assigning the new value. Compare
* the return value with the data passed in to determine if a new entry was
* created. Returns NULL if memory allocation failed.
*/
void *hashmap_put(struct hashmap *map, const void *key, void *data)
{
struct hashmap_entry *entry;
HASHMAP_ASSERT(map != NULL);
HASHMAP_ASSERT(key != NULL);
/* Rehash with 2x capacity if load factor is approaching 0.75 */
if (map->table_size <= hashmap_table_min_size_calc(map->num_entries)) {
hashmap_rehash(map, map->table_size << 1);
}
entry = hashmap_entry_find(map, key, true);
if (!entry) {
/*
* Cannot find an empty slot. Either out of memory, or using
* a poor hash function. Attempt to rehash once to reduce
* chain length.
*/
if (hashmap_rehash(map, map->table_size << 1) < 0) {
return NULL;
}
entry = hashmap_entry_find(map, key, true);
if (!entry) {
return NULL;
}
}
if (!entry->key) {
/* Allocate copy of key to simplify memory management */
if (map->key_alloc) {
entry->key = map->key_alloc(key);
if (!entry->key) {
return NULL;
}
} else {
entry->key = (void *)key;
}
++map->num_entries;
} else if (entry->data) {
/* Do not overwrite existing data */
return entry->data;
}
entry->data = data;
return data;
}
/*
* Return the data pointer, or NULL if no entry exists.
*/
void *hashmap_get(const struct hashmap *map, const void *key)
{
struct hashmap_entry *entry;
HASHMAP_ASSERT(map != NULL);
HASHMAP_ASSERT(key != NULL);
entry = hashmap_entry_find(map, key, false);
if (!entry) {
return NULL;
}
return entry->data;
}
/*
* Remove an entry with the specified key from the map.
* Returns the data pointer, or NULL, if no entry was found.
*/
void *hashmap_remove(struct hashmap *map, const void *key)
{
struct hashmap_entry *entry;
void *data;
HASHMAP_ASSERT(map != NULL);
HASHMAP_ASSERT(key != NULL);
entry = hashmap_entry_find(map, key, false);
if (!entry) {
return NULL;
}
data = entry->data;
/* Clear the entry and make the chain contiguous */
hashmap_entry_remove(map, entry);
return data;
}
/*
* Remove all entries.
*/
void hashmap_clear(struct hashmap *map)
{
HASHMAP_ASSERT(map != NULL);
hashmap_free_keys(map);
map->num_entries = 0;
memset(map->table, 0, sizeof(struct hashmap_entry) * map->table_size);
}
/*
* Remove all entries and reset the hash table to its initial size.
*/
void hashmap_reset(struct hashmap *map)
{
struct hashmap_entry *new_table;
HASHMAP_ASSERT(map != NULL);
hashmap_clear(map);
if (map->table_size == map->table_size_init) {
return;
}
new_table = (struct hashmap_entry *)realloc(map->table,
sizeof(struct hashmap_entry) * map->table_size_init);
if (!new_table) {
return;
}
map->table = new_table;
map->table_size = map->table_size_init;
}
/*
* Return the number of entries in the hash map.
*/
size_t hashmap_size(const struct hashmap *map)
{
HASHMAP_ASSERT(map != NULL);
return map->num_entries;
}
/*
* Get a new hashmap iterator. The iterator is an opaque
* pointer that may be used with hashmap_iter_*() functions.
* Hashmap iterators are INVALID after a put or remove operation is performed.
* hashmap_iter_remove() allows safe removal during iteration.
*/
struct hashmap_iter *hashmap_iter(const struct hashmap *map)
{
HASHMAP_ASSERT(map != NULL);
if (!map->num_entries) {
return NULL;
}
return (struct hashmap_iter *)hashmap_entry_get_populated(map,
map->table);
}
/*
* Return an iterator to the next hashmap entry. Returns NULL if there are
* no more entries.
*/
struct hashmap_iter *hashmap_iter_next(const struct hashmap *map,
const struct hashmap_iter *iter)
{
struct hashmap_entry *entry = (struct hashmap_entry *)iter;
HASHMAP_ASSERT(map != NULL);
if (!iter) {
return NULL;
}
return (struct hashmap_iter *)hashmap_entry_get_populated(map,
entry + 1);
}
/*
* Remove the hashmap entry pointed to by this iterator and return an
* iterator to the next entry. Returns NULL if there are no more entries.
*/
struct hashmap_iter *hashmap_iter_remove(struct hashmap *map,
const struct hashmap_iter *iter)
{
struct hashmap_entry *entry = (struct hashmap_entry *)iter;
HASHMAP_ASSERT(map != NULL);
if (!iter) {
return NULL;
}
if (!entry->key) {
/* Iterator is invalid, so just return the next valid entry */
return hashmap_iter_next(map, iter);
}
hashmap_entry_remove(map, entry);
return (struct hashmap_iter *)hashmap_entry_get_populated(map, entry);
}
/*
* Return the key of the entry pointed to by the iterator.
*/
const void *hashmap_iter_get_key(const struct hashmap_iter *iter)
{
if (!iter) {
return NULL;
}
return (const void *)((struct hashmap_entry *)iter)->key;
}
/*
* Return the data of the entry pointed to by the iterator.
*/
void *hashmap_iter_get_data(const struct hashmap_iter *iter)
{
if (!iter) {
return NULL;
}
return ((struct hashmap_entry *)iter)->data;
}
/*
* Set the data pointer of the entry pointed to by the iterator.
*/
void hashmap_iter_set_data(const struct hashmap_iter *iter, void *data)
{
if (!iter) {
return;
}
((struct hashmap_entry *)iter)->data = data;
}
/*
* Invoke func for each entry in the hashmap. Unlike the hashmap_iter_*()
* interface, this function supports calls to hashmap_remove() during iteration.
* However, it is an error to put or remove an entry other than the current one,
* and doing so will immediately halt iteration and return an error.
* Iteration is stopped if func returns non-zero. Returns func's return
* value if it is < 0, otherwise, 0.
*/
int hashmap_foreach(const struct hashmap *map,
int (*func)(const void *, void *, void *), void *arg)
{
struct hashmap_entry *entry;
size_t num_entries;
const void *key;
int rc;
HASHMAP_ASSERT(map != NULL);
HASHMAP_ASSERT(func != NULL);
entry = map->table;
for (entry = map->table; entry < &map->table[map->table_size];
++entry) {
if (!entry->key) {
continue;
}
num_entries = map->num_entries;
key = entry->key;
rc = func(entry->key, entry->data, arg);
if (rc < 0) {
return rc;
}
if (rc > 0) {
return 0;
}
/* Run this entry again if func() deleted it */
if (entry->key != key) {
--entry;
} else if (num_entries != map->num_entries) {
/* Stop immediately if func put/removed another entry */
return -1;
}
}
return 0;
}
/*
* Default hash function for string keys.
* This is an implementation of the well-documented Jenkins one-at-a-time
* hash function.
*/
size_t hashmap_hash_string(const void *key)
{
const char *key_str = (const char *)key;
size_t hash = 0;
for (; *key_str; ++key_str) {
hash += *key_str;
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
/*
* Default key comparator function for string keys.
*/
int hashmap_compare_string(const void *a, const void *b)
{
return strcmp((const char *)a, (const char *)b);
}
/*
* Default key allocation function for string keys. Use free() for the
* key_free_func.
*/
void *hashmap_alloc_key_string(const void *key)
{
return (void *)strdup((const char *)key);
}
#ifdef HASHMAP_METRICS
/*
* Return the load factor.
*/
double hashmap_load_factor(const struct hashmap *map)
{
HASHMAP_ASSERT(map != NULL);
if (!map->table_size) {
return 0;
}
return (double)map->num_entries / map->table_size;
}
/*
* Return the average number of collisions per entry.
*/
double hashmap_collisions_mean(const struct hashmap *map)
{
struct hashmap_entry *entry;
size_t total_collisions = 0;
HASHMAP_ASSERT(map != NULL);
if (!map->num_entries) {
return 0;
}
for (entry = map->table; entry < &map->table[map->table_size];
++entry) {
if (!entry->key) {
continue;
}
total_collisions += entry->num_collisions;
}
return (double)total_collisions / map->num_entries;
}
/*
* Return the variance between entry collisions. The higher the variance,
* the more likely the hash function is poor and is resulting in clustering.
*/
double hashmap_collisions_variance(const struct hashmap *map)
{
struct hashmap_entry *entry;
double mean_collisions;
double variance;
double total_variance = 0;
HASHMAP_ASSERT(map != NULL);
if (!map->num_entries) {
return 0;
}
mean_collisions = hashmap_collisions_mean(map);
for (entry = map->table; entry < &map->table[map->table_size];
++entry) {
if (!entry->key) {
continue;
}
variance = (double)entry->num_collisions - mean_collisions;
total_variance += variance * variance;
}
return total_variance / map->num_entries;
}
#endif

View File

@ -1,263 +0,0 @@
/*
* Copyright (c) 2016-2017 David Leeds <davidesleeds@gmail.com>
*
* Hashmap is free software; you can redistribute it and/or modify
* it under the terms of the MIT license. See LICENSE for details.
*/
#ifndef __HASHMAP_H__
#define __HASHMAP_H__
/*
* Define HASHMAP_METRICS to compile in performance analysis
* functions for use in assessing hash function performance.
*/
/* #define HASHMAP_METRICS */
/*
* Define HASHMAP_NOASSERT to compile out all assertions used internally.
*/
/* #define HASHMAP_NOASSERT */
/*
* Macros to declare type-specific versions of hashmap_*() functions to
* allow compile-time type checking and avoid the need for type casting.
*/
#define HASHMAP_FUNCS_DECLARE(name, key_type, data_type) \
data_type *name##_hashmap_put(struct hashmap *map, key_type *key, \
data_type *data); \
data_type *name##_hashmap_get(const struct hashmap *map, \
key_type *key); \
data_type *name##_hashmap_remove(struct hashmap *map, \
key_type *key); \
key_type *name##_hashmap_iter_get_key( \
const struct hashmap_iter *iter); \
data_type *name##_hashmap_iter_get_data( \
const struct hashmap_iter *iter); \
void name##_hashmap_iter_set_data(const struct hashmap_iter *iter, \
data_type *data); \
int name##_hashmap_foreach(const struct hashmap *map, \
int (*func)(key_type *, data_type *, void *), void *arg);
#define HASHMAP_FUNCS_CREATE(name, key_type, data_type) \
data_type *name##_hashmap_put(struct hashmap *map, key_type *key, \
data_type *data) \
{ \
return (data_type *)hashmap_put(map, (const void *)key, \
(void *)data); \
} \
data_type *name##_hashmap_get(const struct hashmap *map, \
key_type *key) \
{ \
return (data_type *)hashmap_get(map, (const void *)key); \
} \
data_type *name##_hashmap_remove(struct hashmap *map, \
key_type *key) \
{ \
return (data_type *)hashmap_remove(map, (const void *)key); \
} \
key_type *name##_hashmap_iter_get_key( \
const struct hashmap_iter *iter) \
{ \
return (key_type *)hashmap_iter_get_key(iter); \
} \
data_type *name##_hashmap_iter_get_data( \
const struct hashmap_iter *iter) \
{ \
return (data_type *)hashmap_iter_get_data(iter); \
} \
void name##_hashmap_iter_set_data(const struct hashmap_iter *iter, \
data_type *data) \
{ \
hashmap_iter_set_data(iter, (void *)data); \
} \
struct __##name##_hashmap_foreach_state { \
int (*func)(key_type *, data_type *, void *); \
void *arg; \
}; \
static inline int __##name##_hashmap_foreach_callback(const void *key, \
void *data, void *arg) \
{ \
struct __##name##_hashmap_foreach_state *s = \
(struct __##name##_hashmap_foreach_state *)arg; \
return s->func((key_type *)key, (data_type *)data, s->arg); \
} \
int name##_hashmap_foreach(const struct hashmap *map, \
int (*func)(key_type *, data_type *, void *), void *arg) \
{ \
struct __##name##_hashmap_foreach_state s = { func, arg }; \
return hashmap_foreach(map, \
__##name##_hashmap_foreach_callback, &s); \
}
struct hashmap_iter;
struct hashmap_entry;
/*
* The hashmap state structure.
*/
struct hashmap {
size_t table_size_init;
size_t table_size;
size_t num_entries;
struct hashmap_entry *table;
size_t (*hash)(const void *);
int (*key_compare)(const void *, const void *);
void *(*key_alloc)(const void *);
void (*key_free)(void *);
};
/*
* Initialize an empty hashmap. A hash function and a key comparator are
* required.
*
* hash_func should return an even distribution of numbers between 0
* and SIZE_MAX varying on the key provided.
*
* key_compare_func should return 0 if the keys match, and non-zero otherwise.
*
* initial_size is optional, and may be set to the max number of entries
* expected to be put in the hash table. This is used as a hint to
* pre-allocate the hash table to the minimum size to avoid gratuitous rehashes.
* If initial_size 0, a default size will be used.
*/
int hashmap_init(struct hashmap *map, size_t (*hash_func)(const void *),
int (*key_compare_func)(const void *, const void *),
size_t initial_size);
/*
* Free the hashmap and all associated memory.
*/
void hashmap_destroy(struct hashmap *map);
/*
* Enable internal memory allocation and management of hash keys.
*/
void hashmap_set_key_alloc_funcs(struct hashmap *map,
void *(*key_alloc_func)(const void *),
void (*key_free_func)(void *));
/*
* Add an entry to the hashmap. If an entry with a matching key already
* exists and has a data pointer associated with it, the existing data
* pointer is returned, instead of assigning the new value. Compare
* the return value with the data passed in to determine if a new entry was
* created. Returns NULL if memory allocation failed.
*/
void *hashmap_put(struct hashmap *map, const void *key, void *data);
/*
* Return the data pointer, or NULL if no entry exists.
*/
void *hashmap_get(const struct hashmap *map, const void *key);
/*
* Remove an entry with the specified key from the map.
* Returns the data pointer, or NULL, if no entry was found.
*/
void *hashmap_remove(struct hashmap *map, const void *key);
/*
* Remove all entries.
*/
void hashmap_clear(struct hashmap *map);
/*
* Remove all entries and reset the hash table to its initial size.
*/
void hashmap_reset(struct hashmap *map);
/*
* Return the number of entries in the hash map.
*/
size_t hashmap_size(const struct hashmap *map);
/*
* Get a new hashmap iterator. The iterator is an opaque
* pointer that may be used with hashmap_iter_*() functions.
* Hashmap iterators are INVALID after a put or remove operation is performed.
* hashmap_iter_remove() allows safe removal during iteration.
*/
struct hashmap_iter *hashmap_iter(const struct hashmap *map);
/*
* Return an iterator to the next hashmap entry. Returns NULL if there are
* no more entries.
*/
struct hashmap_iter *hashmap_iter_next(const struct hashmap *map,
const struct hashmap_iter *iter);
/*
* Remove the hashmap entry pointed to by this iterator and returns an
* iterator to the next entry. Returns NULL if there are no more entries.
*/
struct hashmap_iter *hashmap_iter_remove(struct hashmap *map,
const struct hashmap_iter *iter);
/*
* Return the key of the entry pointed to by the iterator.
*/
const void *hashmap_iter_get_key(const struct hashmap_iter *iter);
/*
* Return the data of the entry pointed to by the iterator.
*/
void *hashmap_iter_get_data(const struct hashmap_iter *iter);
/*
* Set the data pointer of the entry pointed to by the iterator.
*/
void hashmap_iter_set_data(const struct hashmap_iter *iter, void *data);
/*
* Invoke func for each entry in the hashmap. Unlike the hashmap_iter_*()
* interface, this function supports calls to hashmap_remove() during iteration.
* However, it is an error to put or remove an entry other than the current one,
* and doing so will immediately halt iteration and return an error.
* Iteration is stopped if func returns non-zero. Returns func's return
* value if it is < 0, otherwise, 0.
*/
int hashmap_foreach(const struct hashmap *map,
int (*func)(const void *, void *, void *), void *arg);
/*
* Default hash function for string keys.
* This is an implementation of the well-documented Jenkins one-at-a-time
* hash function.
*/
size_t hashmap_hash_string(const void *key);
/*
* Default key comparator function for string keys.
*/
int hashmap_compare_string(const void *a, const void *b);
/*
* Default key allocation function for string keys. Use free() for the
* key_free_func.
*/
void *hashmap_alloc_key_string(const void *key);
#ifdef HASHMAP_METRICS
/*
* Return the load factor.
*/
double hashmap_load_factor(const struct hashmap *map);
/*
* Return the average number of collisions per entry.
*/
double hashmap_collisions_mean(const struct hashmap *map);
/*
* Return the variance between entry collisions. The higher the variance,
* the more likely the hash function is poor and is resulting in clustering.
*/
double hashmap_collisions_variance(const struct hashmap *map);
#endif
#endif /* __HASHMAP_H__ */

View File

@ -0,0 +1,766 @@
/*
------------------------------------------------------------------------------
Licensing information can be found at the end of the file.
------------------------------------------------------------------------------
hashtable.h - v1.1 - Cache efficient hash table implementation for C/C++.
Do this:
#define HASHTABLE_IMPLEMENTATION
before you include this file in *one* C/C++ file to create the implementation.
*/
#ifndef hashtable_h
#define hashtable_h
#ifndef HASHTABLE_U64
#define HASHTABLE_U64 unsigned long long
#endif
typedef struct hashtable_t hashtable_t;
void hashtable_init( hashtable_t* table, int item_size, int initial_capacity, void* memctx );
void hashtable_term( hashtable_t* table );
int hashtable_insert( hashtable_t* table, HASHTABLE_U64 key, void const* item );
void hashtable_remove( hashtable_t* table, HASHTABLE_U64 key );
void hashtable_clear( hashtable_t* table );
void* hashtable_find( hashtable_t const* table, HASHTABLE_U64 key );
int hashtable_count( hashtable_t const* table );
void* hashtable_items( hashtable_t const* table );
HASHTABLE_U64 const* hashtable_keys( hashtable_t const* table );
void hashtable_swap( hashtable_t* table, int index_a, int index_b );
#endif /* hashtable_h */
/**
Example
=======
#define HASHTABLE_IMPLEMENTATION
#include "hashtable.h"
#include <stdio.h> // for printf
int main( int argc, char** argv )
{
(void) argc, argv;
// define some example key and value types
typedef struct key_t { int a, b, c; } key_t;
typedef struct value_t
{
char id[ 64 ];
float x, y, z;
int n[ 250 ];
} value_t;
// create a couple of sample keys
// (don't bother to fill in the fields for this sample)
key_t* key_a = (key_t*)malloc( sizeof( key_t ) );
key_t* key_b = (key_t*)malloc( sizeof( key_t ) );
hashtable_t table;
hashtable_init( &table, sizeof( value_t ), 256, 0 );
{
// values are copied into the table, not stored by pointer
// (don't bother to fill in all the fields for this sample)
value_t value_a = { "Item A" };
value_t value_b = { "Item B" };
hashtable_insert( &table, (HASHTABLE_U64)(uintptr_t)key_a, &value_a );
hashtable_insert( &table, (HASHTABLE_U64)(uintptr_t)key_b, &value_b );
}
// find the values by key
value_t* value_a = (value_t*)hashtable_find( &table, (HASHTABLE_U64)(uintptr_t)key_a );
printf( "First item: %s\n", value_a->id );
value_t* value_b = (value_t*)hashtable_find( &table, (HASHTABLE_U64)(uintptr_t)key_b );
printf( "Second item: %s\n", value_b->id );
// remove one of the items
hashtable_remove( &table, (HASHTABLE_U64)(uintptr_t)key_a );
// it is possible to enumerate keys and values
int count = hashtable_count( &table );
HASHTABLE_U64 const* keys = hashtable_keys( &table );
value_t* items = (value_t*)hashtable_items( &table );
printf( "\nEnumeration:\n" );
for( int i = 0; i < count; ++i )
printf( " 0x%X : %s\n", (int) keys[ i ], items[ i ].id );
// cleanup
hashtable_term( &table );
free( key_b );
free( key_a );
return 0;
}
API Documentation
=================
hashtable.h is a small library for storing values in a table and access them efficiently by a 64-bit key. It is a
single-header library, and does not need any .lib files or other binaries, or any build scripts. To use it, you just
include hashtable.h to get the API declarations. To get the definitions, you must include hashtable.h from *one* single
C or C++ file, and #define the symbol `HASHTABLE_IMPLEMENTATION` before you do.
The key value must be unique per entry, and is hashed for efficient lookup using an internal hashing algorithm. This
library does not support custom key types, so typically pointers or handles are used as key values.
The library is written with efficiency in mind. Data and keys are stored in separate structures, for better cache
coherency, and hash collisions are resolved with open addressing/linear probing using the next available slot, which is
also good for the cache.
Customization
-------------
There are a few different things in hashtable.h which are configurable by #defines. Most of the API use the `int` data
type, for integer values where the exact size is not important. However, for some functions, it specifically makes use
of 32 and 64 bit data types. These default to using `unsigned int` and `unsigned long long` by default, but can be
redefined by #defining HASHTABLE_U32 and HASHTABLE_U64 respectively, before including hashtable.h. This is useful if
you, for example, use the types from `<stdint.h>` in the rest of your program, and you want hashtable.h to use
compatible types. In this case, you would include hashtable.h using the following code:
#define HASHTABLE_U32 uint32_t
#define HASHTABLE_U64 uint64_t
#include "hashtable.h"
Note that when customizing the data types, you need to use the same definition in every place where you include
hashtable.h, as they affect the declarations as well as the definitions.
The rest of the customizations only affect the implementation, so will only need to be defined in the file where you
have the #define HASHTABLE_IMPLEMENTATION.
Note that if all customizations are utilized, hashtable.h will include no external files whatsoever, which might be
useful if you need full control over what code is being built.
### size_t
Internally, the hashtable.h implementation makes use of the standard `size_t` data type. This requires including the
c runtime library header `<stddef.h>`. To allow full configurability, and avoid hashtable.h including stddef.h, you can
specify which type hashtable.h should use for its size_t, by #defining HASHTABLE_SIZE_T, like this:
#define HASHTABLE_IMPLEMENTATION
#define HASHTABLE_SIZE_T uint64_t
#include "hashtable.h"
If not specified, hashtable.h will by default include stddef.h and use the standard `size_t` type.
### Custom memory allocators
To store the internal data structures, hashtable.h needs to do dynamic allocation by calling `malloc`. Programs might
want to keep track of allocations done, or use custom defined pools to allocate memory from. hashtable.h allows for
specifying custom memory allocation functions for `malloc` and `free`. This is done with the following code:
#define HASHTABLE_IMPLEMENTATION
#define HASHTABLE_MALLOC( ctx, size ) ( my_custom_malloc( ctx, size ) )
#define HASHTABLE_FREE( ctx, ptr ) ( my_custom_free( ctx, ptr ) )
#include "hashtable.h"
where `my_custom_malloc` and `my_custom_free` are your own memory allocation/deallocation functions. The `ctx` parameter
is an optional parameter of type `void*`. When `hashtable_init` is called, you can pass in a `memctx` parameter, which
can be a pointer to anything you like, and which will be passed through as the `ctx` parameter to every
`HASHTABLE_MALLOC`/`HASHTABLE_FREE` call. For example, if you are doing memory tracking, you can pass a pointer to your
tracking data as `memctx`, and in your custom allocation/deallocation function, you can cast the `ctx` param back to the
right type, and access the tracking data.
If no custom allocator is defined, hashtable.h will default to `malloc` and `free` from the C runtime library.
### Custom assert
hashtable.h makes use of asserts to report usage errors and failed allocation errors. By default, it makes use of the C
runtime library `assert` macro, which only executes in debug builds. However, it allows for substituting with your own
assert function or macro using the following code:
#define HASHTABLE_IMPLEMENTATION
#define HASHTABLE_ASSERT( condition ) ( my_custom_assert( condition ) )
#include "hashtable.h"
Note that if you only want the asserts to trigger in debug builds, you must add a check for this in your custom assert.
### Custom C runtime functions
The library makes use of two additional functions from the C runtime library, and for full flexibility, it allows you
to substitute them for your own. Here's an example:
#define HASHTABLE_IMPLEMENTATION
#define HASHTABLE_MEMCPY( dst, src, cnt ) ( my_memcpy_func( dst, src, cnt ) )
#define HASHTABLE_MEMSET( ptr, val, cnt ) ( my_memset_func( ptr, val, cnt ) )
#include "hashtable.h"
If no custom function is defined, hashtable.h will default to the C runtime library equivalent.
hashtable_init
--------------
void hashtable_init( hashtable_t* table, int item_size, int initial_capacity, void* memctx )
Initialize a hashtable instance. `item_size` specifies the size, in bytes, of the data type holding a single item stored
in the table. `initial_capacity` is the number of items to allocate storage for initially - capacity will automatically
grow as needed, by reallocating memory.
hashtable_term
--------------
void hashtable_term( hashtable_t* table )
Terminates a hashtable instance, releasing all memory used by it. No further calls to the hashtable API are valid until
the instance is reinitialized by another call to `hashtable_init`.
hashtable_insert
----------------
int hashtable_insert( hashtable_t* table, HASHTABLE_U64 key, void const* item )
Inserts a data item into the hashtable, associating it with the specified key. The item is copied into the hashtable,
rather than just storing the `item` pointer, so the `item` pointer can be safely released after the call to
`hashtable_insert`. The value of `key` must be unique - it is not valid to store two items with the same key value. An
assert is triggered if trying to add a key which already exists, which means that if the default assert is used, it will
only be checked in debug builds - in release builds, it is up to the calling code to ensure this doesn't happen, or the
hashtable will be left in an undefined state.
hashtable_remove
----------------
void hashtable_remove( hashtable_t* table, HASHTABLE_U64 key )
Removes the item associated with the specified key, and the instance of the key itself, from the hashtable. If the
specified key could not be found, an assert is triggered.
hashtable_clear
---------------
void hashtable_clear( hashtable_t* table )
Removes all the items stored in the hashtable, without deallocating any of the memory it has allocated.
hashtable_find
--------------
void* hashtable_find( hashtable_t const* table, HASHTABLE_U64 key )
Returns a pointer to the item associated with the specified key, or NULL it the key was not found. The lookup is
designed for efficiency, and for minimizing cache missed.
hashtable_count
---------------
int hashtable_count( hashtable_t const* table )
Returns the number of items currently held in the table.
hashtable_items
---------------
void* hashtable_items( hashtable_t const* table )
Returns a pointer to the items currently held in the table. All items are stored in a contiguous memory block, and you
can get to the next item be moving the pointer `item_size` bytes forward, where `item_size` is the same value as passed
to hash_table_init. The easiest way to acces items is to cast the return value to the correct type and just index it as
a normal array. It contains as many items as returned by `hashtable_count`.
hashtable_keys
--------------
HASHTABLE_U64 const* hashtable_keys( hashtable_t const* table )
Returns a pointer to the keys currently held in the table, in the same order as the items returned from
`hashtable_items`. Can be indexed as an array with as many elements as returned by `hashtable_count`.
hashtable_swap
--------------
void hashtable_swap( hashtable_t* table, int index_a, int index_b )
Swaps the specified item/key pairs, and updates the hash lookup for both. Can be used to re-order the contents, as
retrieved by calling `hashtable_items` and `hashtable_keys`, while keeping the hashing intact.
*/
/*
----------------------
IMPLEMENTATION
----------------------
*/
#ifndef hashtable_t_h
#define hashtable_t_h
#ifndef HASHTABLE_U32
#define HASHTABLE_U32 unsigned int
#endif
struct hashtable_internal_slot_t
{
HASHTABLE_U32 key_hash;
int item_index;
int base_count;
};
struct hashtable_t
{
void* memctx;
int count;
int item_size;
struct hashtable_internal_slot_t* slots;
int slot_capacity;
HASHTABLE_U64* items_key;
int* items_slot;
void* items_data;
int item_capacity;
void* swap_temp;
};
#endif /* hashtable_t_h */
#ifdef HASHTABLE_IMPLEMENTATION
#undef HASHTABLE_IMPLEMENTATION
#ifndef HASHTABLE_SIZE_T
#undef _CRT_NONSTDC_NO_DEPRECATE
#define _CRT_NONSTDC_NO_DEPRECATE
#undef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#include <stddef.h>
#define HASHTABLE_SIZE_T size_t
#endif
#ifndef HASHTABLE_ASSERT
#undef _CRT_NONSTDC_NO_DEPRECATE
#define _CRT_NONSTDC_NO_DEPRECATE
#undef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#include <assert.h>
#define HASHTABLE_ASSERT( x ) assert( x )
#endif
#ifndef HASHTABLE_MEMSET
#undef _CRT_NONSTDC_NO_DEPRECATE
#define _CRT_NONSTDC_NO_DEPRECATE
#undef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#include <string.h>
#define HASHTABLE_MEMSET( ptr, val, cnt ) ( memset( ptr, val, cnt ) )
#endif
#ifndef HASHTABLE_MEMCPY
#undef _CRT_NONSTDC_NO_DEPRECATE
#define _CRT_NONSTDC_NO_DEPRECATE
#undef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#include <string.h>
#define HASHTABLE_MEMCPY( dst, src, cnt ) ( memcpy( dst, src, cnt ) )
#endif
#ifndef HASHTABLE_MALLOC
#undef _CRT_NONSTDC_NO_DEPRECATE
#define _CRT_NONSTDC_NO_DEPRECATE
#undef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#include <stdlib.h>
#define HASHTABLE_MALLOC( ctx, size ) ( malloc( size ) )
#define HASHTABLE_FREE( ctx, ptr ) ( free( ptr ) )
#endif
static HASHTABLE_U32 hashtable_internal_pow2ceil( HASHTABLE_U32 v )
{
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
++v;
v += ( v == 0 );
return v;
}
void hashtable_init( hashtable_t* table, int item_size, int initial_capacity, void* memctx )
{
int slots_size;
initial_capacity = (int)hashtable_internal_pow2ceil( initial_capacity >=0 ? (HASHTABLE_U32) initial_capacity : 32U );
table->memctx = memctx;
table->count = 0;
table->item_size = item_size;
table->slot_capacity = (int) hashtable_internal_pow2ceil( (HASHTABLE_U32) ( initial_capacity + initial_capacity / 2 ) );
slots_size = (int)( table->slot_capacity * sizeof( *table->slots ) );
table->slots = (struct hashtable_internal_slot_t*) HASHTABLE_MALLOC( table->memctx, (HASHTABLE_SIZE_T) slots_size );
HASHTABLE_ASSERT( table->slots );
HASHTABLE_MEMSET( table->slots, 0, (HASHTABLE_SIZE_T) slots_size );
table->item_capacity = (int) hashtable_internal_pow2ceil( (HASHTABLE_U32) initial_capacity );
table->items_key = (HASHTABLE_U64*) HASHTABLE_MALLOC( table->memctx,
table->item_capacity * ( sizeof( *table->items_key ) + sizeof( *table->items_slot ) + table->item_size ) + table->item_size );
HASHTABLE_ASSERT( table->items_key );
table->items_slot = (int*)( table->items_key + table->item_capacity );
table->items_data = (void*)( table->items_slot + table->item_capacity );
table->swap_temp = (void*)( ( (size_t) table->items_data ) + table->item_size * table->item_capacity );
}
void hashtable_term( hashtable_t* table )
{
HASHTABLE_FREE( table->memctx, table->items_key );
HASHTABLE_FREE( table->memctx, table->slots );
}
// from https://gist.github.com/badboy/6267743
static HASHTABLE_U32 hashtable_internal_calculate_hash( HASHTABLE_U64 key )
{
key = ( ~key ) + ( key << 18 );
key = key ^ ( key >> 31 );
key = key * 21;
key = key ^ ( key >> 11 );
key = key + ( key << 6 );
key = key ^ ( key >> 22 );
HASHTABLE_ASSERT( key );
return (HASHTABLE_U32) key;
}
static int hashtable_internal_find_slot( hashtable_t const* table, HASHTABLE_U64 key )
{
int const slot_mask = table->slot_capacity - 1;
HASHTABLE_U32 const hash = hashtable_internal_calculate_hash( key );
int const base_slot = (int)( hash & (HASHTABLE_U32)slot_mask );
int base_count = table->slots[ base_slot ].base_count;
int slot = base_slot;
while( base_count > 0 )
{
HASHTABLE_U32 slot_hash = table->slots[ slot ].key_hash;
if( slot_hash )
{
int slot_base = (int)( slot_hash & (HASHTABLE_U32)slot_mask );
if( slot_base == base_slot )
{
HASHTABLE_ASSERT( base_count > 0 );
--base_count;
if( slot_hash == hash && table->items_key[ table->slots[ slot ].item_index ] == key )
return slot;
}
}
slot = ( slot + 1 ) & slot_mask;
}
return -1;
}
static void hashtable_internal_expand_slots( hashtable_t* table )
{
int const old_capacity = table->slot_capacity;
struct hashtable_internal_slot_t* old_slots = table->slots;
int slot_mask, size, i;
table->slot_capacity *= 2;
slot_mask = table->slot_capacity - 1;
size = (int)( table->slot_capacity * sizeof( *table->slots ) );
table->slots = (struct hashtable_internal_slot_t*) HASHTABLE_MALLOC( table->memctx, (HASHTABLE_SIZE_T) size );
HASHTABLE_ASSERT( table->slots );
HASHTABLE_MEMSET( table->slots, 0, (HASHTABLE_SIZE_T) size );
for( i = 0; i < old_capacity; ++i )
{
HASHTABLE_U32 const hash = old_slots[ i ].key_hash;
if( hash )
{
int item_index;
int const base_slot = (int)( hash & (HASHTABLE_U32)slot_mask );
int slot = base_slot;
while( table->slots[ slot ].key_hash )
slot = ( slot + 1 ) & slot_mask;
table->slots[ slot ].key_hash = hash;
item_index = old_slots[ i ].item_index;
table->slots[ slot ].item_index = item_index;
table->items_slot[ item_index ] = slot;
++table->slots[ base_slot ].base_count;
}
}
HASHTABLE_FREE( table->memctx, old_slots );
}
static int hashtable_internal_expand_items( hashtable_t* table )
{
HASHTABLE_U64* new_items_key;
int* new_items_slot;
void* new_items_data, * new_swap_temp;
table->item_capacity *= 2;
new_items_key = (HASHTABLE_U64*) HASHTABLE_MALLOC( table->memctx,
table->item_capacity * ( sizeof( *table->items_key ) + sizeof( *table->items_slot ) + table->item_size ) + table->item_size);
if( new_items_key == NULL )
return 0;
new_items_slot = (int*)( new_items_key + table->item_capacity );
new_items_data = (void*)( new_items_slot + table->item_capacity );
new_swap_temp = (void*)( ( (size_t) new_items_data ) + table->item_size * table->item_capacity );
HASHTABLE_MEMCPY( new_items_key, table->items_key, table->count * sizeof( *table->items_key ) );
HASHTABLE_MEMCPY( new_items_slot, table->items_slot, table->count * sizeof( *table->items_key ) );
HASHTABLE_MEMCPY( new_items_data, table->items_data, (HASHTABLE_SIZE_T) table->count * table->item_size );
HASHTABLE_FREE( table->memctx, table->items_key );
table->items_key = new_items_key;
table->items_slot = new_items_slot;
table->items_data = new_items_data;
table->swap_temp = new_swap_temp;
return 1;
}
int hashtable_insert( hashtable_t* table, HASHTABLE_U64 key, void const* item )
{
int slot_mask, base_slot;
int base_count, slot, first_free;
void* dest_item;
HASHTABLE_U32 hash;
HASHTABLE_ASSERT( hashtable_internal_find_slot( table, key ) < 0 );
if( table->count >= ( table->slot_capacity - table->slot_capacity / 3 ) )
hashtable_internal_expand_slots( table );
slot_mask = table->slot_capacity - 1;
hash = hashtable_internal_calculate_hash( key );
base_slot = (int)( hash & (HASHTABLE_U32)slot_mask );
base_count = table->slots[ base_slot ].base_count;
slot = base_slot;
first_free = slot;
while( base_count )
{
int slot_base;
HASHTABLE_U32 const slot_hash = table->slots[ slot ].key_hash;
if( slot_hash == 0 && table->slots[ first_free ].key_hash != 0 ) first_free = slot;
slot_base = (int)( slot_hash & (HASHTABLE_U32)slot_mask );
if( slot_base == base_slot )
--base_count;
slot = ( slot + 1 ) & slot_mask;
}
slot = first_free;
while( table->slots[ slot ].key_hash )
slot = ( slot + 1 ) & slot_mask;
if( table->count >= table->item_capacity )
if( !hashtable_internal_expand_items( table ) )
return 0;
HASHTABLE_ASSERT( !table->slots[ slot ].key_hash && ( hash & (HASHTABLE_U32) slot_mask ) == (HASHTABLE_U32) base_slot );
HASHTABLE_ASSERT( hash );
table->slots[ slot ].key_hash = hash;
table->slots[ slot ].item_index = table->count;
++table->slots[ base_slot ].base_count;
dest_item = (void*)( ( (size_t) table->items_data ) + table->count * table->item_size );
memcpy( dest_item, item, (HASHTABLE_SIZE_T) table->item_size );
table->items_key[ table->count ] = key;
table->items_slot[ table->count ] = slot;
++table->count;
return 1;
}
void hashtable_remove( hashtable_t* table, HASHTABLE_U64 key )
{
int slot, slot_mask, base_slot, index, last_index;
HASHTABLE_U32 hash;
slot = hashtable_internal_find_slot( table, key );
HASHTABLE_ASSERT( slot >= 0 );
slot_mask = table->slot_capacity - 1;
hash = table->slots[ slot ].key_hash;
base_slot = (int)( hash & (HASHTABLE_U32) slot_mask );
HASHTABLE_ASSERT( hash );
--table->slots[ base_slot ].base_count;
table->slots[ slot ].key_hash = 0;
index = table->slots[ slot ].item_index;
last_index = table->count - 1;
if( index != last_index )
{
void* src_item, * dst_item;
table->items_key[ index ] = table->items_key[ last_index ];
table->items_slot[ index ] = table->items_slot[ last_index ];
dst_item = (void*)( ( (size_t) table->items_data ) + index * table->item_size );
src_item = (void*)( ( (size_t) table->items_data ) + last_index * table->item_size );
HASHTABLE_MEMCPY( dst_item, src_item, (HASHTABLE_SIZE_T) table->item_size );
table->slots[ table->items_slot[ last_index ] ].item_index = index;
}
--table->count;
}
void hashtable_clear( hashtable_t* table )
{
table->count = 0;
HASHTABLE_MEMSET( table->slots, 0, table->slot_capacity * sizeof( *table->slots ) );
}
void* hashtable_find( hashtable_t const* table, HASHTABLE_U64 key )
{
int slot, index;
void* item;
slot = hashtable_internal_find_slot( table, key );
if( slot < 0 ) return 0;
index = table->slots[ slot ].item_index;
item = (void*)( ( (size_t) table->items_data ) + index * table->item_size );
return item;
}
int hashtable_count( hashtable_t const* table )
{
return table->count;
}
void* hashtable_items( hashtable_t const* table )
{
return table->items_data;
}
HASHTABLE_U64 const* hashtable_keys( hashtable_t const* table )
{
return table->items_key;
}
void hashtable_swap( hashtable_t* table, int index_a, int index_b )
{
int slot_a, slot_b;
void* item_a, *item_b;
HASHTABLE_U64 temp_key;
if( index_a < 0 || index_a >= table->count || index_b < 0 || index_b >= table->count ) return;
slot_a = table->items_slot[ index_a ];
slot_b = table->items_slot[ index_b ];
table->items_slot[ index_a ] = slot_b;
table->items_slot[ index_b ] = slot_a;
temp_key = table->items_key[ index_a ];
table->items_key[ index_a ] = table->items_key[ index_b ];
table->items_key[ index_b ] = temp_key;
item_a = (void*)( ( (size_t) table->items_data ) + index_a * table->item_size );
item_b = (void*)( ( (size_t) table->items_data ) + index_b * table->item_size );
HASHTABLE_MEMCPY( table->swap_temp, item_a, table->item_size );
HASHTABLE_MEMCPY( item_a, item_b, table->item_size );
HASHTABLE_MEMCPY( item_b, table->swap_temp, table->item_size );
table->slots[ slot_a ].item_index = index_b;
table->slots[ slot_b ].item_index = index_a;
}
#endif /* HASHTABLE_IMPLEMENTATION */
/*
contributors:
Randy Gaul (hashtable_clear, hashtable_swap )
revision history:
1.1 added hashtable_clear, hashtable_swap
1.0 first released version
*/
/*
------------------------------------------------------------------------------
This software is available under 2 licenses - you may choose the one you like.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2015 Mattias Gustavsson
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/

View File

@ -0,0 +1,27 @@
/* Simple wrapper for a single-file hashtable implementation
* from Mattias Gustavsson.
*
* Copyright (c) Stanislav Gromov, 2018
*
* This software is provided "as-is", without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software in
* a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "wrap_hashtable.h"
#define HASHTABLE_IMPLEMENTATION
#include "hashtable.h"

View File

@ -0,0 +1,27 @@
/* Simple wrapper for a single-file hashtable implementation
* from Mattias Gustavsson.
*
* Copyright (c) Stanislav Gromov, 2018
*
* This software is provided "as-is", without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software in
* a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <stddef.h>
#define HASHTABLE_SIZE_T size_t
#define HASHTABLE_U64 size_t
#include "hashtable.h"

View File

@ -41,7 +41,7 @@
#else #else
#include <setjmp.h> #include <setjmp.h>
#endif #endif
#include "hashmap/hashmap.h" #include "hashtable/wrap_hashtable.h"
#include "../amx/osdefs.h" #include "../amx/osdefs.h"
#include "../amx/amx.h" #include "../amx/amx.h"
@ -127,6 +127,7 @@ typedef struct s_symbol {
struct s_symbol *next; struct s_symbol *next;
struct s_symbol *parent; /* hierarchical types (multi-dimensional arrays) */ struct s_symbol *parent; /* hierarchical types (multi-dimensional arrays) */
struct s_symbol *child; struct s_symbol *child;
struct s_symbol *htnext;
char name[sNAMEMAX+1]; char name[sNAMEMAX+1];
cell addr; /* address or offset (or value for constant, index for native function) */ cell addr; /* address or offset (or value for constant, index for native function) */
cell codeaddr; /* address (in the code segment) where the symbol declaration starts */ cell codeaddr; /* address (in the code segment) where the symbol declaration starts */
@ -161,12 +162,6 @@ typedef struct s_symbol {
char *documentation; /* optional documentation string */ char *documentation; /* optional documentation string */
} symbol; } symbol;
/* new symbol struct for cached global symbols with the same names*/
typedef struct s_symbol2 {
struct s_symbol *symbol;
struct s_symbol2 *next;
} symbol2;
/* Possible entries for "ident". These are used in the "symbol", "value" /* Possible entries for "ident". These are used in the "symbol", "value"
* and arginfo structures. Not every constant is valid for every use. * and arginfo structures. Not every constant is valid for every use.
@ -798,7 +793,7 @@ SC_FUNC int state_conflict_id(int listid1,int listid2);
#if !defined SC_SKIP_VDECL #if !defined SC_SKIP_VDECL
SC_VDECL symbol loctab; /* local symbol table */ SC_VDECL symbol loctab; /* local symbol table */
SC_VDECL symbol glbtab; /* global symbol table */ SC_VDECL symbol glbtab; /* global symbol table */
SC_VDECL struct hashmap symbol_cache_map; SC_VDECL struct hashtable_t symbol_cache_ht;
SC_VDECL symbol *line_sym; SC_VDECL symbol *line_sym;
SC_VDECL cell *litq; /* the literal queue */ SC_VDECL cell *litq; /* the literal queue */
SC_VDECL unsigned char pline[]; /* the line read from the input file */ SC_VDECL unsigned char pline[]; /* the line read from the input file */

View File

@ -769,7 +769,7 @@ cleanup:
* done (i.e. on a fatal error) */ * done (i.e. on a fatal error) */
delete_symbols(&glbtab,0,TRUE,TRUE); delete_symbols(&glbtab,0,TRUE,TRUE);
line_sym=NULL; line_sym=NULL;
hashmap_destroy(&symbol_cache_map); hashtable_term(&symbol_cache_ht);
delete_consttable(&tagname_tab); delete_consttable(&tagname_tab);
delete_consttable(&libname_tab); delete_consttable(&libname_tab);
delete_consttable(&sc_automaton_tab); delete_consttable(&sc_automaton_tab);
@ -937,7 +937,7 @@ static void initglobals(void)
litq=NULL; /* the literal queue */ litq=NULL; /* the literal queue */
glbtab.next=NULL; /* clear global variables/constants table */ glbtab.next=NULL; /* clear global variables/constants table */
loctab.next=NULL; /* " local " / " " */ loctab.next=NULL; /* " local " / " " */
hashmap_init(&symbol_cache_map,hashmap_hash_string,hashmap_compare_string,10000); hashtable_init(&symbol_cache_ht, sizeof(symbol *),(16384/3*2),NULL); /* 16384 slots */
tagname_tab.next=NULL; /* tagname table */ tagname_tab.next=NULL; /* tagname table */
libname_tab.next=NULL; /* library table (#pragma library "..." syntax) */ libname_tab.next=NULL; /* library table (#pragma library "..." syntax) */

View File

@ -2622,58 +2622,171 @@ SC_FUNC int ishex(char c)
return (c>='0' && c<='9') || (c>='a' && c<='f') || (c>='A' && c<='F'); return (c>='0' && c<='9') || (c>='a' && c<='f') || (c>='A' && c<='F');
} }
static void symbol_cache_add(symbol *sym,symbol2 *new_cache_sym) static uint32_t murmurhash2_aligned(const void *key,int len,uint32_t seed)
{ {
symbol2 *cache_sym; /* Based on public domain code by Austin Appleby.
* https://github.com/aappleby/smhasher/blob/master/src/MurmurHash2.cpp
*/
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
if (new_cache_sym==NULL) { const uint32_t m=0x5bd1e995;
new_cache_sym=(symbol2 *)malloc(sizeof(symbol2)); const int r=24;
if (new_cache_sym==NULL) const unsigned char *data=(const unsigned char *)key;
error(103); /* insufficient memory */ uint32_t h=seed ^ len;
new_cache_sym->symbol=sym; int align=(int)(size_t)data & 3;
new_cache_sym->next=NULL; int sl,sr;
}
cache_sym=hashmap_get(&symbol_cache_map,sym->name); if (align && (len>=4)) {
if (cache_sym==NULL) { // Pre-load the temp registers
if (hashmap_put(&symbol_cache_map,sym->name,new_cache_sym)==NULL) uint32_t t=0,d=0;
error(103); /* insufficient memory */
switch (align) {
case 1: t |= data[2] << 16;
case 2: t |= data[1] << 8;
case 3: t |= data[0];
} /* switch */
t <<= (8*align);
data += 4-align;
len -= 4-align;
sl=8*(4-align);
sr=8*align;
// Mix
while (len>=4) {
uint32_t k;
d=*(uint32_t *)data;
t=(t >> sr) | (d << sl);
k=t;
MIX(h,k,m);
t=d;
data += 4;
len -= 4;
} /* while */
// Handle leftover data in temp registers
d=0;
if (len>=align) {
uint32_t k;
switch (align) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
} /* switch */
k=(t >> sr) | (d << sl);
MIX(h,k,m);
data += align;
len -= align;
//----------
// Handle tail bytes
switch (len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0];
h *= m;
} /* switch */
} else {
switch (len) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
case 0: h ^= (t >> sr) | (d << sl);
h *= m;
} /* switch */
} /* if */
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} else { } else {
while(cache_sym->next!=NULL) while (len>=4) {
cache_sym=cache_sym->next; uint32_t k=*(uint32_t *)data;
cache_sym->next=new_cache_sym;
} MIX(h,k,m);
data += 4;
len -= 4;
} /* while */
//----------
// Handle tail bytes
switch (len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0];
h *= m;
} /* switch */
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} /* if */
#undef MIX
} }
static symbol2 *symbol_cache_remove(symbol *sym,int free_cache_sym) #define namehash(name) \
{ (HASHTABLE_U64)murmurhash2_aligned(name,strlen(name),0)
symbol2 *cache_sym;
symbol2 *parent_cache_sym=NULL;
cache_sym=hashmap_get(&symbol_cache_map,sym->name); static void symbol_cache_add(symbol *sym)
{
const HASHTABLE_U64 key=namehash(sym->name);
symbol **pcache_sym=(symbol **)hashtable_find(&symbol_cache_ht,key);
symbol *cache_sym;
if (pcache_sym==NULL) {
if (hashtable_insert(&symbol_cache_ht,key,&sym)==0)
error(103); /* insufficient memory */
return;
} /* if */
cache_sym=*pcache_sym;
while (cache_sym->htnext!=NULL)
cache_sym=cache_sym->htnext;
cache_sym->htnext=sym;
}
static void symbol_cache_remove(symbol *sym)
{
const HASHTABLE_U64 key=namehash(sym->name);
symbol **pcache_sym;
symbol *cache_sym=NULL;
symbol *parent_cache_sym=NULL;
pcache_sym=(symbol **)hashtable_find(&symbol_cache_ht,key);
if (pcache_sym!=NULL)
cache_sym=*pcache_sym;
for ( ;; ) { for ( ;; ) {
if (cache_sym==NULL) if (cache_sym==NULL)
return NULL; return;
if (cache_sym->symbol==sym) if (cache_sym==sym)
break; break;
parent_cache_sym=cache_sym; parent_cache_sym=cache_sym;
cache_sym=cache_sym->next; cache_sym=cache_sym->htnext;
} } /* for */
if (parent_cache_sym!=NULL) { if (parent_cache_sym==NULL) {
parent_cache_sym->next=cache_sym->next; if (cache_sym->htnext==NULL)
hashtable_remove(&symbol_cache_ht,key);
else
*pcache_sym=cache_sym->htnext;
} else { } else {
hashmap_remove(&symbol_cache_map,sym->name); parent_cache_sym->htnext=cache_sym->htnext;
if (cache_sym->next!=NULL) } /* if */
if (hashmap_put(&symbol_cache_map,sym->name,cache_sym->next)==NULL)
error(103); /* insufficient memory */
}
if (free_cache_sym) {
free(cache_sym);
return NULL;
}
cache_sym->next=NULL;
return cache_sym;
} }
/* The local variable table must be searched backwards, so that the deepest /* The local variable table must be searched backwards, so that the deepest
@ -2697,8 +2810,9 @@ static symbol *add_symbol(symbol *root,symbol *entry,int sort)
memcpy(newsym,entry,sizeof(symbol)); memcpy(newsym,entry,sizeof(symbol));
newsym->next=root->next; newsym->next=root->next;
root->next=newsym; root->next=newsym;
newsym->htnext=NULL;
if (newsym->vclass==sGLOBAL) if (newsym->vclass==sGLOBAL)
symbol_cache_add(newsym,NULL); symbol_cache_add(newsym);
return newsym; return newsym;
} }
@ -2744,7 +2858,7 @@ static void free_symbol(symbol *sym)
if (sym->documentation!=NULL) if (sym->documentation!=NULL)
free(sym->documentation); free(sym->documentation);
if (sym->vclass==sGLOBAL) if (sym->vclass==sGLOBAL)
symbol_cache_remove(sym,1); symbol_cache_remove(sym);
free(sym); free(sym);
} }
@ -2849,31 +2963,26 @@ SC_FUNC void delete_symbols(symbol *root,int level,int delete_labels,int delete_
SC_FUNC void rename_symbol(symbol *sym,const char *newname) SC_FUNC void rename_symbol(symbol *sym,const char *newname)
{ {
int is_global=(sym->vclass==sGLOBAL); const int isglobal=(sym->vclass==sGLOBAL);
symbol2 *cache_sym;
if (is_global) if (isglobal)
cache_sym=symbol_cache_remove(sym,0); symbol_cache_remove(sym);
strcpy(sym->name,newname); strcpy(sym->name,newname);
if (is_global && cache_sym!=NULL) if (isglobal)
symbol_cache_add(sym,cache_sym); symbol_cache_add(sym);
} }
static symbol *find_symbol(const symbol *root,const char *name,int fnumber,int automaton,int *cmptag) static symbol *find_symbol(const symbol *root,const char *name,int fnumber,int automaton,int *cmptag)
{ {
symbol *firstmatch=NULL; symbol *firstmatch=NULL;
symbol *sym=root->next; symbol *sym=root->next;
symbol2 *cache_sym=NULL;
int count=0; int count=0;
int is_global=(root==&glbtab); const int is_global=(root==&glbtab);
if (is_global) { if (is_global) {
cache_sym=hashmap_get(&symbol_cache_map,name); symbol **pcache_sym=(symbol **)hashtable_find(&symbol_cache_ht,namehash(name));
if (cache_sym) sym=(pcache_sym!=NULL) ? *pcache_sym : NULL;
sym=cache_sym->symbol; } /* if */
else
sym=NULL;
}
while (sym!=NULL) { while (sym!=NULL) {
if ( (is_global || strcmp(name,sym->name)==0) /* check name */ if ( (is_global || strcmp(name,sym->name)==0) /* check name */
@ -2898,16 +3007,8 @@ static symbol *find_symbol(const symbol *root,const char *name,int fnumber,int a
break; break;
} /* if */ } /* if */
} /* if */ } /* if */
} /* */ } /* if */
if (is_global) { sym=(is_global) ? sym->htnext : sym->next;
cache_sym=cache_sym->next;
if (cache_sym)
sym=cache_sym->symbol;
else
sym=NULL;
} else {
sym=sym->next;
}
} /* while */ } /* while */
if (cmptag!=NULL && firstmatch!=NULL) { if (cmptag!=NULL && firstmatch!=NULL) {
if (*cmptag==0) if (*cmptag==0)

View File

@ -33,7 +33,7 @@
*/ */
SC_VDEFINE symbol loctab; /* local symbol table */ SC_VDEFINE symbol loctab; /* local symbol table */
SC_VDEFINE symbol glbtab; /* global symbol table */ SC_VDEFINE symbol glbtab; /* global symbol table */
SC_VDEFINE struct hashmap symbol_cache_map; SC_VDEFINE struct hashtable_t symbol_cache_ht;
SC_VDEFINE cell *litq; /* the literal queue */ SC_VDEFINE cell *litq; /* the literal queue */
SC_VDEFINE unsigned char pline[sLINEMAX+1]; /* the line read from the input file */ SC_VDEFINE unsigned char pline[sLINEMAX+1]; /* the line read from the input file */
SC_VDEFINE const unsigned char *lptr; /* points to the current position in "pline" */ SC_VDEFINE const unsigned char *lptr; /* points to the current position in "pline" */