2630.39.1, 2630.28.29, 2630.34.3, 2630.34.2, 2630.34.1, 2630.29.29,
2630.29.28, 2630.31.1, 2630.28.13, 2630.28.10, 2617.23.14 and
some other minor revisions.
This patch implements:
WL#4264 "Backup: Stabilize Service Interface" -- all the
server prerequisites except si_objects.{h,cc} themselves (they can
be just copied over, when needed).
WL#4435: Support OUT-parameters in prepared statements.
(and all issues in the initial patches for these two
tasks, that were discovered in pushbuild and during testing).
Bug#39519: mysql_stmt_close() should flush all data
associated with the statement.
After execution of a prepared statement, send OUT parameters of the invoked
stored procedure, if any, to the client.
When using the binary protocol, send the parameters in an additional result
set over the wire. When using the text protocol, assign out parameters to
the user variables from the CALL(@var1, @var2, ...) specification.
The following refactoring has been made:
- Protocol::send_fields() was renamed to Protocol::send_result_set_metadata();
- A new Protocol::send_result_set_row() was introduced to incapsulate
common functionality for sending row data.
- Signature of Protocol::prepare_for_send() was changed: this operation
does not need a list of items, the number of items is fully sufficient.
The following backward incompatible changes have been made:
- CLIENT_MULTI_RESULTS is now enabled by default in the client;
- CLIENT_PS_MULTI_RESUTLS is now enabled by default in the client.
The flag EXTRA_ACL is used in conjugation with our access checks, yet it is
not clear what impact this flag has.
This is a code clean up which replaces use of EXTRA_ACL with an explicit
function parameter.
The patch also fixes privilege checks for:
- SHOW CREATE TABLE: The new privilege requirement is any privilege on
the table-level.
- CHECKSUM TABLE: Requires SELECT on the table level.
- SHOW CREATE VIEW: Requires SHOW_VIEW and SELECT on the table level
(just as the manual claims)
- SHOW INDEX: Requires any privilege on any column combination.
Implemented the server infrastructure for the fix:
1. Added a function LEX_STRING *thd_query_string(THD) to return
a LEX_STRING structure instead of char *.
This is the function that must be called in innodb instead of
thd_query()
2. Did some encapsulation in THD : aggregated thd_query and
thd_query_length into a LEX_STRING and made accessor and mutator
methods for easy code updating.
3. Updated the server code to use the new methods where applicable.
local storage for query cache).
We need more than one pointer in a thread to
represent the query cache and net->query_cache_query can not be used
any more (due to ABI compatibility issues and to different life
time of NET and THD).
This is a backport of the following patch from 6.0:
----------------------------------------------------------
revno: 2476.1157.2
committer: kostja@bodhi.(none)
timestamp: Sat 2007-06-16 13:29:24 +0400
"Patch to fix bug 38551": it was a manual backport (2008-10-15) of
http://lists.mysql.com/commits/56418.
But that was an early, non-final patch from the fixer of this bug (TheK):
after that backport was made by Mikael, TheK decided to do a different fix,
which was finally pushed into 6.0.
Then 5.1's code was changed for some other reasons, so now we have a
conflict between the old never-approved TheK patch backported to Summit and
the latest 5.1. The backport cannot stay, it has to be removed due to
the conflict, and then rewritten if desired.
bzr branch mysql-5.1-performance-version mysql-trunk # Summit
cd mysql-trunk
bzr merge mysql-5.1-innodb_plugin # which is 5.1 + Innodb plugin
bzr rm innobase # remove the builtin
Next step: build, test fixes.
Early patch submitted for discussion.
It is possible for more than one thread to enter the condition
in query_cache_insert(), but the condition predicate is to
signal one thread each time the cache status changes between
the following states: {NO_FLUSH_IN_PROGRESS,FLUSH_IN_PROGRESS,
TABLE_FLUSH_IN_PROGRESS}
Consider three threads THD1, THD2, THD3
THD2: select ... => Got a writer in ::store_query
THD3: select ... => Got a writer in ::store_query
THD1: flush tables => qc status= FLUSH_IN_PROGRESS;
new writers are blocked.
THD2: select ... => Still got a writer and enters cond in
query_cache_insert
THD3: select ... => Still got a writer and enters cond in
query_cache_insert
THD1: flush tables => finished and signal status change.
THD2: select ... => Wakes up and completes the insert.
THD3: select ... => Happily waiting for better times. Why hurry?
This patch is a refactoring of this lock system. It introduces four new methods:
Query_cache::try_lock()
Query_cache::lock()
Query_cache::lock_and_suspend()
Query_cache::unlock()
This change also deprecates wait_while_table_flush_is_in_progress(). All threads are
queued and put on a conditional wait. On each unlock the queue is signalled. This resolve
the issues with left over threads. To assure that no threads are spending unnecessary
time waiting a signal broadcast is issued every time a lock is taken before a full
cache flush.
The query cache module did not check for the SQL_NO_CACHE keyword before
attempting to query the hash lookup table. This had a small performance impact.
By introducing a check on the query string before obtaining the hash mutex
we can gain some performance if the SQL_NO_CACHE directive is used often.
The problem is that select queries executed concurrently with
a concurrent insert on a MyISAM table could be cached if the
select started after the query cache invalidation but before
the unlock of tables performed by the concurrent insert. This
race could happen because the concurrent insert was failing
to prevent cache of select queries happening at the same time.
The solution is to add a 'uncacheable' status flag to signal
that a concurrent insert is being performed on the table and
that queries executing at the same time shouldn't cache the
results.
- Remove bothersome warning messages. This change focuses on the warnings
that are covered by the ignore file: support-files/compiler_warnings.supp.
- Strings are guaranteed to be max uint in length
The problem is that the query cache was storing partial results
if the statement failed when sending the results to the client.
This could cause clients to hang when trying to read the results
from the cache as they would, for example, wait indefinitely for
a eof packet that wasn't saved.
The solution is to always discard the caching of a query that
failed to send its results to the associated client.
The problem is that the query cache stores packets containing
the server status of the time when the cached statement was run.
This might lead to a wrong transaction status in the client side
if a statement is cached during a transaction and is later served
outside a transaction context (and vice-versa).
The solution is to take into account the transaction status when
storing in and serving from the query cache.
The query cache module did not check for the SQL_NO_CACHE keyword before
attempting to query the hash lookup table. This had a small performance impact.
By introducing a check on the query string before obtaining the hash mutex
we can gain some performance if the SQL_NO_CACHE directive is used often.
This patch also fixes bugs 36963 and 35600.
- In many places a view was confused with an anonymous derived
table, i.e. access checking was skipped. Fixed by introducing a
predicate to tell the difference between named and anonymous
derived tables.
- When inserting fields for "SELECT * ", there was no
distinction between base tables and views, where one should be
made. View privileges are checked elsewhere.
if cached query uses many tables
The problem was that query cache would not properly cache
queries which used 256 or more tables but yet would leave
behind query cache blocks pointing to freed (destroyed)
data. Later when invalidating (due to a truncate) query cache
would attempt to grab a lock which resided in the freed data,
leading to hangs or undefined behavior.
This was happening due to a improper return value from the
function responsible for registering the tables used in the
query (so the cache can be invalidated later if one of the
tables is modified). The function expected a return value of
type boolean (char, 8 bits) indicating success (1) or failure
(0) but the number of tables registered (unsigned int, 32 bits)
was being returned instead. This caused the function to return
failure for cases where it had actually succeed because when
a type (unsigned int) is converted to a narrower type (char),
the excess bits on the left are discarded. Thus if the 8
rightmost bits are zero, the return value will be 0 (failure).
The solution is to simply return true (1) only if the number of
registered table is greater than zero and false (0) otherwise.
The initial value of free memory blocks in 0. When the query cache is enabled
a new memory block gets allocated and is assigned number 1. The free memory
block is later split each time query cache memory is allocated for new blocks.
This means that the free memory block counter won't be reduced to zero when
the number of allocated blocks are zero, but rather one. To avoid confusion
this patch changes this behavior so that the free memory block counter is
reset to zero when the query cache is disabled.
Note that when the query cache is enabled and resized the free memory block
counter was still calculated correctly.
pre-locking.
The crash was caused by an implicit assumption in check_table_access() that
table_list parameter is always a part of lex->query_tables.
When iterating over the passed list of tables, check_table_access() used
to stop only when lex->query_tables_last_not_own was reached.
In case of pre-locking, lex->query_tables_last_own is not NULL and points
to some element of lex->query_tables. When the parameter
of check_table_access() was not part of lex->query_tables, loop invariant
could never be violated and a crash would happen when the current table
pointer would point beyond the end of the provided list.
The fix is to change the signature of check_table_access() to also accept
a numeric limit of loop iterations, similarly to check_grant(), and
supply this limit in all places when we want to check access of tables
that are outside lex->query_tables, or just want to check access to one table.
Reseting the query cache by issuing a SET GLOBAL query_cache_size=0 caused the server
to crash if a the server concurrently was saving a new result set to the query cache. The
reason for this was that the invalidation wasn't waiting on the result writers to
release the block level locks on the query cache.