and small collateral changes
mysql-test/lib/My/Test.pm:
somehow with "print" we get truncated writes sometimes
mysql-test/suite/perfschema/r/digest_table_full.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/perfschema/r/dml_handler.result:
host table is not ported over yet
mysql-test/suite/perfschema/r/information_schema.result:
host table is not ported over yet
mysql-test/suite/perfschema/r/nesting.result:
this differs, because we don't rewrite general log queries, and multi-statement
packets are logged as a one entry. this result file is identical to what mysql-5.6.5
produces with the --log-raw option.
mysql-test/suite/perfschema/r/relaylog.result:
MariaDB modifies the binlog index file directly, while MySQL 5.6 has a feature "crash-safe binlog index" and modifies a special "crash-safe" shadow copy of the index file and then moves it over. That's why this test shows "NONE" index file writes in MySQL and "MANY" in MariaDB.
mysql-test/suite/perfschema/r/server_init.result:
MariaDB initializes the "manager" resources from the "manager" thread, and starts this thread only when --flush-time is not 0. MySQL 5.6 initializes "manager" resources unconditionally on server startup.
mysql-test/suite/perfschema/r/stage_mdl_global.result:
this differs, because MariaDB disables query cache when query_cache_size=0. MySQL does not
do that, and this causes useless mutex locks and waits.
mysql-test/suite/perfschema/r/statement_digest.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/perfschema/r/statement_digest_consumers.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/perfschema/r/statement_digest_long_query.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/rpl/r/rpl_mixed_drop_create_temp_table.result:
will be updated to match 5.6 when alfranio.correia@oracle.com-20110512172919-c1b5kmum4h52g0ni and anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y are merged
mysql-test/suite/rpl/r/rpl_non_direct_mixed_mixing_engines.result:
will be updated to match 5.6 when anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y is merged
Increment long_query_count also if thd->variables.log_slow_rate_limit is used
Added new state "Writing to binlog"
sql/sql_class.h:
Added THD::utime_after_query to avoid calling current_utime() twice for every end-of-query
sql/sql_parse.cc:
Increment long_query_count also if thd->variables.log_slow_rate_limit is used
Removed extra calls to thd_proc_info(thd, "logging slow query") and thd->current_utime();
sql/sql_table.cc:
Added new state "Writing to binlog"
Introduce a new storage engine API method commit_checkpoint_request().
This is used to replace the fsync() at the end of every storage engine
commit with a single fsync() when a binlog is rotated.
Binlog rotation is now done during group commit instead of being
delayed until unlog(), removing some server stall and avoiding an
expensive lock/unlock of LOCK_log inside unlog().
feature_dynamic_columns,feature_fulltext,feature_gis,feature_locale,feature_subquery,feature_timezone,feature_trigger,feature_xml
Opened_views, Executed_triggers, Executed_events
Added new process status 'updating status' as part of 'freeing items'
mysql-test/r/features.result:
Test of feature_xxx status variables
mysql-test/r/mysqld--help.result:
Removed duplicated 'language' variable.
mysql-test/r/view.result:
Test of opened_views
mysql-test/suite/rpl/t/rpl_start_stop_slave.test:
Write more information on failure
mysql-test/t/features.test:
Test of feature_xxx status variables
mysql-test/t/view.test:
Test of opened_views
sql/event_scheduler.cc:
Increment executed_events status variable
sql/field.cc:
Increment status variable
sql/item_func.cc:
Increment status variable
sql/item_strfunc.cc:
Increment status variable
sql/item_subselect.cc:
Increment status variable
sql/item_xmlfunc.cc:
Increment status variable
sql/mysqld.cc:
Add new status variables to 'show status'
sql/mysqld.h:
Added executed_events
sql/sql_base.cc:
Increment status variable
sql/sql_class.h:
Add new status variables
sql/sql_parse.cc:
Added new process status 'updating status' as part of 'freeing items'
sql/sql_trigger.cc:
Increment status variable
sql/sys_vars.cc:
Increment status variable
sql/tztime.cc:
Increment status variable
updates to system, statistics and admin tables logged to binary log.
- Removed special code used to temporarily change to statement based replication.
- Changed to a faster and smaller interface for temporarily switching to statement based replication.
sql/event_db_repository.cc:
Change to new interface to not use row based replication for system table changes.
sql/events.cc:
Change to new interface to not use row based replication for system table changes.
sql/sp.cc:
Removed temporarily switching to statement based replication (this is now done automaticly in mysql_execute_command())
sql/sql_acl.cc:
Change to new interface to not use row based replication for system table changes.
Removed temporarily switching to statement based replication (this is now done automaticly in mysql_execute_command())
sql/sql_class.h:
Added new interface for temporarily switching to statement based replication.
sql/sql_parse.cc:
Mark commands that needs original replication mode with CF_FORCE_ORIGINAL_BINLOG_FORMAT.
Switch automaticly to statement based replication for statements that can't generate row based events (and can't change replication mode)
sql/sql_udf.cc:
Removed temporarily switching to statement based replication (this is now done automaticly in mysql_execute_command())
two tests still fail:
main.innodb_icp and main.range_vs_index_merge_innodb
call records_in_range() with both range ends being open
(which triggers an assert)
- Fix the year in Monty Program Ab copyrights in the new files.
- Fix permissions handling so that SHOW EXPLAIN's handling is the
same as SHOW PROCESSLIST's.
- Add Monty Program Ab copyright in new files
- Change Apc_target::make_apc_call() to accept a C++-style
functor (instead of C-style function + parameter)
a multiple definition of 'THD::clear_error()' in (at least)
libmysqld.a(lib_sql.o) and libmysqld.a(libfederated_a-ha_federated.o).
Patch provided by Ramil Kalimullin.
a multiple definition of 'THD::clear_error()' in (at least)
libmysqld.a(lib_sql.o) and libmysqld.a(libfederated_a-ha_federated.o).
Patch provided by Ramil Kalimullin.
- Make SHOW EXPLAIN code take into account that st_select_lex object without joins can be
a full-featured SELECTs which were already executed and cleaned up.
Renamed the system variable optimizer_use_stat_tables to use_stat_tables.
This variable now has only 3 possible values:
'never', 'complementary', 'preferably'.
If the server has been launched with
--use-stat-tables='complementary'|'preferably'
then the statictics tables can be employed by the optimizer and by the
ANALYZE command.
Analysis:
-------------
If server is started with limit of MAX_CONNECTIONS and
MAX_USER_CONNECTIONS then only MAX_USER_CONNECTIONS of any particular
users can be connected to server and total MAX_CONNECTIONS of client can
be connected to server.
Server maintains a counter for total CONNECTIONS and total CONNECTIONS
from particular user.
Here, MAX_CONNECTIONS of connections are created to server. Out of this
MAX_CONNECTIONS, connections from particular user (say USER1) are
also created. The connections from USER1 is lesser than
MAX_USER_CONNECTIONS. After that there was one more connection request from
USER1. Since USER1 can still create connections as he havent reached
MAX_USER_CONNECTIONS, server increments counter of CONNECTIONS per user.
As server already has MAX_CONNECTIONS of connections, next check to total
CONNECTION count fails. In this case control is returned WITHOUT
decrementing the CONNECTIONS per user. So the counter per user CONNECTIONS goes
on incrementing for each attempt until current connections are closed.
And because of this counter per CONNECTIONS reached MAX_USER_CONNECTIONS.
So, next connections form USER1 user always returns with MAX_USER_CONNECTION
limit error, even when total connection to sever are less than MAX_CONNECTIONS.
Fix:
-------------
This issue is occurred because of not handling counters properly in the
server. Changed the code to handle per user connection counters properly.
Analysis:
-------------
If server is started with limit of MAX_CONNECTIONS and
MAX_USER_CONNECTIONS then only MAX_USER_CONNECTIONS of any particular
users can be connected to server and total MAX_CONNECTIONS of client can
be connected to server.
Server maintains a counter for total CONNECTIONS and total CONNECTIONS
from particular user.
Here, MAX_CONNECTIONS of connections are created to server. Out of this
MAX_CONNECTIONS, connections from particular user (say USER1) are
also created. The connections from USER1 is lesser than
MAX_USER_CONNECTIONS. After that there was one more connection request from
USER1. Since USER1 can still create connections as he havent reached
MAX_USER_CONNECTIONS, server increments counter of CONNECTIONS per user.
As server already has MAX_CONNECTIONS of connections, next check to total
CONNECTION count fails. In this case control is returned WITHOUT
decrementing the CONNECTIONS per user. So the counter per user CONNECTIONS goes
on incrementing for each attempt until current connections are closed.
And because of this counter per CONNECTIONS reached MAX_USER_CONNECTIONS.
So, next connections form USER1 user always returns with MAX_USER_CONNECTION
limit error, even when total connection to sever are less than MAX_CONNECTIONS.
Fix:
-------------
This issue is occurred because of not handling counters properly in the
server. Changed the code to handle per user connection counters properly.
This is a backport of the (unchaged) fix for MySQL bug #11764372, 57197.
Analysis:
When the outer query finishes its main execution and computes GROUP BY,
it needs to construct a new temporary table (and a corresponding JOIN) to
execute the last DISTINCT operation. At this point JOIN::exec calls
JOIN::join_free, which calls JOIN::cleanup -> TMP_TABLE_PARAM::cleanup
for both the outer and the inner JOINs. The call to the inner
TMP_TABLE_PARAM::cleanup sets copy_field = NULL, but not copy_field_end.
The final execution phase that computes the DISTINCT invokes:
evaluate_join_record -> end_write -> copy_funcs
The last function copies the results of all functions into the temp table.
copy_funcs walks over all functions in join->tmp_table_param.items_to_copy.
In this case items_to_copy contains both assignments to user variables.
The process of copying user variables invokes Item_func_set_user_var::check
which in turn re-evaluates the arguments of the user variable assignment.
This in turn triggers re-evaluation of the subquery, and ultimately
copy_field.
However, the previous call to TMP_TABLE_PARAM::cleanup for the subquery
already set copy_field to NULL but not its copy_field_end. This results
in a null pointer access, and a crash.
Fix:
Set copy_field_end and save_copy_field_end to null when deleting
copy fields in TMP_TABLE_PARAM::cleanup().
PROBLEM:
Threads end-up in deadlock due to locks acquired as described
below,
con1: Run Query on a table.
It is important that this SELECT must back-off while
trying to open the t1 and enter into wait_for_condition().
The SELECT then is blocked trying to lock mysys_var->mutex
which is held by con3. The very significant fact here is
that mysys_var->current_mutex will still point to LOCK_open,
even if LOCK_open is no longer held by con1 at this point.
con2: Try dropping table used in con1 or query some table.
It will hold LOCK_open and be blocked trying to lock
kernel_mutex held by con4.
con3: Try killing the query run by con1.
It will hold THD::LOCK_thd_data belonging to con1 while
trying to lock mysys_var->current_mutex belonging to con1.
But current_mutex will point to LOCK_open which is held
by con2.
con4: Get innodb engine status
It will hold kernel_mutex, trying to lock THD::LOCK_thd_data
belonging to con1 which is held by con3.
So while technically only con2, con3 and con4 participate in the
deadlock, con1's mysys_var->current_mutex pointing to LOCK_open
is a vital component of the deadlock.
CYCLE = (THD::LOCK_thd_data -> LOCK_open ->
kernel_mutex -> THD::LOCK_thd_data)
FIX:
LOCK_thd_data has responsibility of protecting,
1) thd->query, thd->query_length
2) VIO
3) thd->mysys_var (used by KILL statement and shutdown)
4) THD during thread delete.
Among above responsibilities, 1), 2)and (3,4) seems to be three
independent group of responsibility. If there is different LOCK
owning responsibility of (3,4), the above mentioned deadlock cycle
can be avoid. This fix introduces LOCK_thd_kill to handle
responsibility (3,4), which eliminates the deadlock issue.
Note: The problem is not found in 5.5. Introduction MDL subsystem
caused metadata locking responsibility to be moved from TDC/TC to
MDL subsystem. Due to this, responsibility of LOCK_open is reduced.
As the use of LOCK_open is removed in open_table() and
mysql_rm_table() the above mentioned CYCLE does not form.
Revision ID for changes,
open_table() = dlenev@mysql.com-20100727133458-m3ua9oslnx8fbbvz
mysql_rm_table() = jon.hauglid@oracle.com-20101116100012-kxep9txz2fxy3nmw
PROBLEM:
Threads end-up in deadlock due to locks acquired as described
below,
con1: Run Query on a table.
It is important that this SELECT must back-off while
trying to open the t1 and enter into wait_for_condition().
The SELECT then is blocked trying to lock mysys_var->mutex
which is held by con3. The very significant fact here is
that mysys_var->current_mutex will still point to LOCK_open,
even if LOCK_open is no longer held by con1 at this point.
con2: Try dropping table used in con1 or query some table.
It will hold LOCK_open and be blocked trying to lock
kernel_mutex held by con4.
con3: Try killing the query run by con1.
It will hold THD::LOCK_thd_data belonging to con1 while
trying to lock mysys_var->current_mutex belonging to con1.
But current_mutex will point to LOCK_open which is held
by con2.
con4: Get innodb engine status
It will hold kernel_mutex, trying to lock THD::LOCK_thd_data
belonging to con1 which is held by con3.
So while technically only con2, con3 and con4 participate in the
deadlock, con1's mysys_var->current_mutex pointing to LOCK_open
is a vital component of the deadlock.
CYCLE = (THD::LOCK_thd_data -> LOCK_open ->
kernel_mutex -> THD::LOCK_thd_data)
FIX:
LOCK_thd_data has responsibility of protecting,
1) thd->query, thd->query_length
2) VIO
3) thd->mysys_var (used by KILL statement and shutdown)
4) THD during thread delete.
Among above responsibilities, 1), 2)and (3,4) seems to be three
independent group of responsibility. If there is different LOCK
owning responsibility of (3,4), the above mentioned deadlock cycle
can be avoid. This fix introduces LOCK_thd_kill to handle
responsibility (3,4), which eliminates the deadlock issue.
Note: The problem is not found in 5.5. Introduction MDL subsystem
caused metadata locking responsibility to be moved from TDC/TC to
MDL subsystem. Due to this, responsibility of LOCK_open is reduced.
As the use of LOCK_open is removed in open_table() and
mysql_rm_table() the above mentioned CYCLE does not form.
Revision ID for changes,
open_table() = dlenev@mysql.com-20100727133458-m3ua9oslnx8fbbvz
mysql_rm_table() = jon.hauglid@oracle.com-20101116100012-kxep9txz2fxy3nmw
The patch enables back constant subquery execution during
query optimization after it was disabled during the development
of MWL#89 (cost-based choice of IN-TO-EXISTS vs MATERIALIZATION).
The main idea is that constant subqueries are allowed to be executed
during optimization if their execution is not expensive.
The approach is as follows:
- Constant subqueries are recursively optimized in the beginning of
JOIN::optimize of the outer query. This is done by the new method
JOIN::optimize_constant_subqueries(). This is done so that the cost
of executing these queries can be estimated.
- Optimization of the outer query proceeds normally. During this phase
the optimizer may request execution of non-expensive constant subqueries.
Each place where the optimizer may potentially execute an expensive
expression is guarded with the predicate Item::is_expensive().
- The implementation of Item_subselect::is_expensive has been extended
to use the number of examined rows (estimated by the optimizer) as a
way to determine whether the subquery is expensive or not.
- The new system variable "expensive_subquery_limit" controls how many
examined rows are considered to be not expensive. The default is 100.
In addition, multiple changes were needed to make this solution work
in the light of the changes made by MWL#89. These changes were needed
to fix various crashes and wrong results, and legacy bugs discovered
during development.