MDEV-26996 Reverse-ordered indexes: remove SEL_ARG::is_ascending

Instead, Get the "is_ascending" value from the array of KEY_PART
structures that describes the [pseudo-]index that is being analyzed.
This commit is contained in:
Sergei Petrunia 2021-12-20 23:51:55 +03:00 committed by Sergei Golubchik
parent cbfe6a5e86
commit d6c6f79f5d
4 changed files with 77 additions and 83 deletions

View File

@ -1084,7 +1084,7 @@ Item_func_spatial_rel::get_mm_leaf(RANGE_OPT_PARAM *param,
field->get_key_image(str, key_part->length, key_part->image_type); field->get_key_image(str, key_part->length, key_part->image_type);
SEL_ARG *tree; SEL_ARG *tree;
if (!(tree= new (param->mem_root) SEL_ARG(field, true, str, str))) if (!(tree= new (param->mem_root) SEL_ARG(field, str, str)))
DBUG_RETURN(0); // out of memory DBUG_RETURN(0); // out of memory
switch (type) { switch (type) {

View File

@ -1879,7 +1879,6 @@ SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
max_flag=arg.max_flag; max_flag=arg.max_flag;
maybe_flag=arg.maybe_flag; maybe_flag=arg.maybe_flag;
maybe_null=arg.maybe_null; maybe_null=arg.maybe_null;
is_ascending= arg.is_ascending;
part=arg.part; part=arg.part;
field=arg.field; field=arg.field;
min_value=arg.min_value; min_value=arg.min_value;
@ -1905,10 +1904,9 @@ inline void SEL_ARG::make_root()
use_count=0; elements=1; use_count=0; elements=1;
} }
SEL_ARG::SEL_ARG(Field *f, bool is_asc, const uchar *min_value_arg, SEL_ARG::SEL_ARG(Field *f, const uchar *min_value_arg,
const uchar *max_value_arg) const uchar *max_value_arg)
:min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()), :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
is_ascending(is_asc),
elements(1), use_count(1), field(f), min_value((uchar*) min_value_arg), elements(1), use_count(1), field(f), min_value((uchar*) min_value_arg),
max_value((uchar*) max_value_arg), next(0),prev(0), max_value((uchar*) max_value_arg), next(0),prev(0),
next_key_part(0), color(BLACK), type(KEY_RANGE), weight(1) next_key_part(0), color(BLACK), type(KEY_RANGE), weight(1)
@ -1917,11 +1915,11 @@ SEL_ARG::SEL_ARG(Field *f, bool is_asc, const uchar *min_value_arg,
max_part_no= 1; max_part_no= 1;
} }
SEL_ARG::SEL_ARG(Field *field_,uint8 part_, bool is_asc_, SEL_ARG::SEL_ARG(Field *field_,uint8 part_,
uchar *min_value_, uchar *max_value_, uchar *min_value_, uchar *max_value_,
uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_) uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
:min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_), :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
part(part_),maybe_null(field_->real_maybe_null()), is_ascending(is_asc_), part(part_),maybe_null(field_->real_maybe_null()),
elements(1),use_count(1), elements(1),use_count(1),
field(field_), min_value(min_value_), max_value(max_value_), field(field_), min_value(min_value_), max_value(max_value_),
next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE), weight(1) next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE), weight(1)
@ -1941,8 +1939,8 @@ SEL_ARG::SEL_ARG(Field *field_,uint8 part_, bool is_asc_,
class SEL_ARG_LE: public SEL_ARG class SEL_ARG_LE: public SEL_ARG
{ {
public: public:
SEL_ARG_LE(const uchar *key, Field *field, bool is_asc) SEL_ARG_LE(const uchar *key, Field *field)
:SEL_ARG(field, is_asc, key, key) :SEL_ARG(field, key, key)
{ {
if (!field->real_maybe_null()) if (!field->real_maybe_null())
min_flag= NO_MIN_RANGE; // From start min_flag= NO_MIN_RANGE; // From start
@ -1962,17 +1960,17 @@ public:
Use this constructor if value->save_in_field() went precisely, Use this constructor if value->save_in_field() went precisely,
without any data rounding or truncation. without any data rounding or truncation.
*/ */
SEL_ARG_LT(const uchar *key, Field *field, bool is_asc) SEL_ARG_LT(const uchar *key, Field *field)
:SEL_ARG_LE(key, field, is_asc) :SEL_ARG_LE(key, field)
{ max_flag= NEAR_MAX; } { max_flag= NEAR_MAX; }
/* /*
Use this constructor if value->save_in_field() returned success, Use this constructor if value->save_in_field() returned success,
but we don't know if rounding or truncation happened but we don't know if rounding or truncation happened
(as some Field::store() do not report minor data changes). (as some Field::store() do not report minor data changes).
*/ */
SEL_ARG_LT(THD *thd, const uchar *key, Field *field, bool is_asc, SEL_ARG_LT(THD *thd, const uchar *key, Field *field,
Item *value) Item *value)
:SEL_ARG_LE(key, field, is_asc) :SEL_ARG_LE(key, field)
{ {
if (stored_field_cmp_to_item(thd, field, value) == 0) if (stored_field_cmp_to_item(thd, field, value) == 0)
max_flag= NEAR_MAX; max_flag= NEAR_MAX;
@ -1988,7 +1986,7 @@ public:
without any data rounding or truncation. without any data rounding or truncation.
*/ */
SEL_ARG_GT(const uchar *key, const KEY_PART *key_part, Field *field) SEL_ARG_GT(const uchar *key, const KEY_PART *key_part, Field *field)
:SEL_ARG(field, !(key_part->flag & HA_REVERSE_SORT), key, key) :SEL_ARG(field, key, key)
{ {
// Don't use open ranges for partial key_segments // Don't use open ranges for partial key_segments
if (!(key_part->flag & HA_PART_KEY_SEG)) if (!(key_part->flag & HA_PART_KEY_SEG))
@ -2002,7 +2000,7 @@ public:
*/ */
SEL_ARG_GT(THD *thd, const uchar *key, SEL_ARG_GT(THD *thd, const uchar *key,
const KEY_PART *key_part, Field *field, Item *value) const KEY_PART *key_part, Field *field, Item *value)
:SEL_ARG(field, !(key_part->flag & HA_REVERSE_SORT), key, key) :SEL_ARG(field, key, key)
{ {
// Don't use open ranges for partial key_segments // Don't use open ranges for partial key_segments
if ((!(key_part->flag & HA_PART_KEY_SEG)) && if ((!(key_part->flag & HA_PART_KEY_SEG)) &&
@ -2020,8 +2018,8 @@ public:
Use this constructor if value->save_in_field() went precisely, Use this constructor if value->save_in_field() went precisely,
without any data rounding or truncation. without any data rounding or truncation.
*/ */
SEL_ARG_GE(const uchar *key, Field *field, bool is_asc) SEL_ARG_GE(const uchar *key, Field *field)
:SEL_ARG(field, is_asc, key, key) :SEL_ARG(field, key, key)
{ {
max_flag= NO_MAX_RANGE; max_flag= NO_MAX_RANGE;
} }
@ -2032,7 +2030,7 @@ public:
*/ */
SEL_ARG_GE(THD *thd, const uchar *key, SEL_ARG_GE(THD *thd, const uchar *key,
const KEY_PART *key_part, Field *field, Item *value) const KEY_PART *key_part, Field *field, Item *value)
:SEL_ARG(field, !(key_part->flag & HA_REVERSE_SORT), key, key) :SEL_ARG(field, key, key)
{ {
// Don't use open ranges for partial key_segments // Don't use open ranges for partial key_segments
if ((!(key_part->flag & HA_PART_KEY_SEG)) && if ((!(key_part->flag & HA_PART_KEY_SEG)) &&
@ -2063,7 +2061,7 @@ SEL_ARG *SEL_ARG::clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent,
} }
else else
{ {
if (!(tmp= new (param->mem_root) SEL_ARG(field, part, is_ascending, if (!(tmp= new (param->mem_root) SEL_ARG(field, part,
min_value, max_value, min_value, max_value,
min_flag, max_flag, maybe_flag))) min_flag, max_flag, maybe_flag)))
return 0; // OOM return 0; // OOM
@ -3244,6 +3242,7 @@ double records_in_column_ranges(PARAM *param, uint idx,
seq.keyno= idx; seq.keyno= idx;
seq.real_keyno= MAX_KEY; seq.real_keyno= MAX_KEY;
seq.key_parts= param->key[idx];
seq.param= param; seq.param= param;
seq.start= tree; seq.start= tree;
seq.is_ror_scan= FALSE; seq.is_ror_scan= FALSE;
@ -8672,8 +8671,7 @@ Item_func_null_predicate::get_mm_leaf(RANGE_OPT_PARAM *param,
if (!field->real_maybe_null()) if (!field->real_maybe_null())
DBUG_RETURN(type == ISNULL_FUNC ? &null_element : NULL); DBUG_RETURN(type == ISNULL_FUNC ? &null_element : NULL);
SEL_ARG *tree; SEL_ARG *tree;
bool is_asc= !(key_part->flag & HA_REVERSE_SORT); if (!(tree= new (alloc) SEL_ARG(field, is_null_string, is_null_string)))
if (!(tree= new (alloc) SEL_ARG(field, is_asc, is_null_string, is_null_string)))
DBUG_RETURN(0); DBUG_RETURN(0);
if (type == Item_func::ISNOTNULL_FUNC) if (type == Item_func::ISNOTNULL_FUNC)
{ {
@ -8773,8 +8771,7 @@ Item_func_like::get_mm_leaf(RANGE_OPT_PARAM *param,
int2store(min_str + maybe_null, min_length); int2store(min_str + maybe_null, min_length);
int2store(max_str + maybe_null, max_length); int2store(max_str + maybe_null, max_length);
} }
bool is_asc= !(key_part->flag & HA_REVERSE_SORT); SEL_ARG *tree= new (param->mem_root) SEL_ARG(field, min_str, max_str);
SEL_ARG *tree= new (param->mem_root) SEL_ARG(field, is_asc, min_str, max_str);
DBUG_RETURN(tree); DBUG_RETURN(tree);
} }
@ -9022,19 +9019,18 @@ SEL_ARG *Field::stored_field_make_mm_leaf(RANGE_OPT_PARAM *param,
if (!(str= make_key_image(param->mem_root, key_part))) if (!(str= make_key_image(param->mem_root, key_part)))
DBUG_RETURN(0); DBUG_RETURN(0);
bool is_asc= !(key_part->flag & HA_REVERSE_SORT);
switch (op) { switch (op) {
case SCALAR_CMP_LE: case SCALAR_CMP_LE:
DBUG_RETURN(new (mem_root) SEL_ARG_LE(str, this, is_asc)); DBUG_RETURN(new (mem_root) SEL_ARG_LE(str, this));
case SCALAR_CMP_LT: case SCALAR_CMP_LT:
DBUG_RETURN(new (mem_root) SEL_ARG_LT(thd, str, this, is_asc, value)); DBUG_RETURN(new (mem_root) SEL_ARG_LT(thd, str, this, value));
case SCALAR_CMP_GT: case SCALAR_CMP_GT:
DBUG_RETURN(new (mem_root) SEL_ARG_GT(thd, str, key_part, this, value)); DBUG_RETURN(new (mem_root) SEL_ARG_GT(thd, str, key_part, this, value));
case SCALAR_CMP_GE: case SCALAR_CMP_GE:
DBUG_RETURN(new (mem_root) SEL_ARG_GE(thd, str, key_part, this, value)); DBUG_RETURN(new (mem_root) SEL_ARG_GE(thd, str, key_part, this, value));
case SCALAR_CMP_EQ: case SCALAR_CMP_EQ:
case SCALAR_CMP_EQUAL: case SCALAR_CMP_EQUAL:
DBUG_RETURN(new (mem_root) SEL_ARG(this, is_asc, str, str)); DBUG_RETURN(new (mem_root) SEL_ARG(this, str, str));
break; break;
} }
DBUG_ASSERT(0); DBUG_ASSERT(0);
@ -9052,19 +9048,18 @@ SEL_ARG *Field::stored_field_make_mm_leaf_exact(RANGE_OPT_PARAM *param,
if (!(str= make_key_image(param->mem_root, key_part))) if (!(str= make_key_image(param->mem_root, key_part)))
DBUG_RETURN(0); DBUG_RETURN(0);
bool is_asc= !(key_part->flag & HA_REVERSE_SORT);
switch (op) { switch (op) {
case SCALAR_CMP_LE: case SCALAR_CMP_LE:
DBUG_RETURN(new (param->mem_root) SEL_ARG_LE(str, this, is_asc)); DBUG_RETURN(new (param->mem_root) SEL_ARG_LE(str, this));
case SCALAR_CMP_LT: case SCALAR_CMP_LT:
DBUG_RETURN(new (param->mem_root) SEL_ARG_LT(str, this, is_asc)); DBUG_RETURN(new (param->mem_root) SEL_ARG_LT(str, this));
case SCALAR_CMP_GT: case SCALAR_CMP_GT:
DBUG_RETURN(new (param->mem_root) SEL_ARG_GT(str, key_part, this)); DBUG_RETURN(new (param->mem_root) SEL_ARG_GT(str, key_part, this));
case SCALAR_CMP_GE: case SCALAR_CMP_GE:
DBUG_RETURN(new (param->mem_root) SEL_ARG_GE(str, this, is_asc)); DBUG_RETURN(new (param->mem_root) SEL_ARG_GE(str, this));
case SCALAR_CMP_EQ: case SCALAR_CMP_EQ:
case SCALAR_CMP_EQUAL: case SCALAR_CMP_EQUAL:
DBUG_RETURN(new (param->mem_root) SEL_ARG(this, is_asc, str, str)); DBUG_RETURN(new (param->mem_root) SEL_ARG(this, str, str));
break; break;
} }
DBUG_ASSERT(0); DBUG_ASSERT(0);
@ -11534,6 +11529,7 @@ ha_rows check_quick_select(PARAM *param, uint idx, bool index_only,
seq.keyno= idx; seq.keyno= idx;
seq.real_keyno= keynr; seq.real_keyno= keynr;
seq.key_parts= param->key[idx];
seq.param= param; seq.param= param;
seq.start= tree; seq.start= tree;
@ -11788,9 +11784,9 @@ void SEL_ARG::store_next_min_max_keys(KEY_PART *key,
int *min_part, int *max_part) int *min_part, int *max_part)
{ {
DBUG_ASSERT(next_key_part); DBUG_ASSERT(next_key_part);
bool asc = next_key_part->is_ascending; const bool asc = !(key[next_key_part->part].flag & HA_REVERSE_SORT);
if (!get_min_flag()) if (!get_min_flag(key))
{ {
if (asc) if (asc)
{ {
@ -11805,7 +11801,7 @@ void SEL_ARG::store_next_min_max_keys(KEY_PART *key,
*cur_min_flag = invert_max_flag(tmp_flag); *cur_min_flag = invert_max_flag(tmp_flag);
} }
} }
if (!get_max_flag()) if (!get_max_flag(key))
{ {
if (asc) if (asc)
{ {
@ -11835,7 +11831,8 @@ get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
int min_part= key_tree->part-1, // # of keypart values in min_key buffer int min_part= key_tree->part-1, // # of keypart values in min_key buffer
max_part= key_tree->part-1; // # of keypart values in max_key buffer max_part= key_tree->part-1; // # of keypart values in max_key buffer
SEL_ARG *next_tree = key_tree->is_ascending ? key_tree->left : key_tree->right; const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
SEL_ARG *next_tree = asc ? key_tree->left : key_tree->right;
if (next_tree != &null_element) if (next_tree != &null_element)
{ {
if (get_quick_keys(param,quick,key,next_tree, if (get_quick_keys(param,quick,key,next_tree,
@ -11844,7 +11841,7 @@ get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
} }
uchar *tmp_min_key=min_key,*tmp_max_key=max_key; uchar *tmp_min_key=min_key,*tmp_max_key=max_key;
key_tree->store_min_max(key[key_tree->part].store_length, key_tree->store_min_max(key, key[key_tree->part].store_length,
&tmp_min_key, min_key_flag, &tmp_min_key, min_key_flag,
&tmp_max_key, max_key_flag, &tmp_max_key, max_key_flag,
&min_part, &max_part); &min_part, &max_part);
@ -11867,8 +11864,8 @@ get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
goto end; // Ugly, but efficient goto end; // Ugly, but efficient
} }
{ {
uint tmp_min_flag= key_tree->get_min_flag(); uint tmp_min_flag= key_tree->get_min_flag(key);
uint tmp_max_flag= key_tree->get_max_flag(); uint tmp_max_flag= key_tree->get_max_flag(key);
key_tree->store_next_min_max_keys(key, key_tree->store_next_min_max_keys(key,
&tmp_min_key, &tmp_min_flag, &tmp_min_key, &tmp_min_flag,
@ -11879,7 +11876,7 @@ get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
} }
else else
{ {
if (key_tree->is_ascending) if (asc)
{ {
flag= (key_tree->min_flag & GEOM_FLAG) ? key_tree->min_flag: flag= (key_tree->min_flag & GEOM_FLAG) ? key_tree->min_flag:
(key_tree->min_flag | (key_tree->min_flag |
@ -11951,7 +11948,7 @@ get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
return 1; return 1;
end: end:
next_tree = key_tree->is_ascending ? key_tree->right : key_tree->left; next_tree= asc ? key_tree->right : key_tree->left;
if (next_tree != &null_element) if (next_tree != &null_element)
return get_quick_keys(param,quick,key,next_tree, return get_quick_keys(param,quick,key,next_tree,
min_key,min_key_flag, min_key,min_key_flag,
@ -16562,6 +16559,7 @@ static void trace_ranges(Json_writer_array *range_trace,
uint n_key_parts= param->table->actual_n_key_parts(keyinfo); uint n_key_parts= param->table->actual_n_key_parts(keyinfo);
DBUG_ASSERT(range_trace->trace_started()); DBUG_ASSERT(range_trace->trace_started());
seq.keyno= idx; seq.keyno= idx;
seq.key_parts= param->key[idx];
seq.real_keyno= param->real_keynr[idx]; seq.real_keyno= param->real_keynr[idx];
seq.param= param; seq.param= param;
seq.start= keypart; seq.start= keypart;

View File

@ -306,11 +306,6 @@ public:
uint8 min_flag,max_flag,maybe_flag; uint8 min_flag,max_flag,maybe_flag;
uint8 part; // Which key part uint8 part; // Which key part
uint8 maybe_null; uint8 maybe_null;
/*
Whether the keypart is ascending or descending.
See HowRangeOptimizerHandlesDescKeyparts for details.
*/
uint8 is_ascending;
/* /*
The ordinal number the least significant component encountered in The ordinal number the least significant component encountered in
the ranges of the SEL_ARG tree (the first component has number 1) the ranges of the SEL_ARG tree (the first component has number 1)
@ -361,14 +356,14 @@ public:
SEL_ARG() {} SEL_ARG() {}
SEL_ARG(SEL_ARG &); SEL_ARG(SEL_ARG &);
SEL_ARG(Field *, bool is_asc, const uchar *, const uchar *); SEL_ARG(Field *, const uchar *, const uchar *);
SEL_ARG(Field *field, uint8 part, bool is_asc, SEL_ARG(Field *field, uint8 part,
uchar *min_value, uchar *max_value, uchar *min_value, uchar *max_value,
uint8 min_flag, uint8 max_flag, uint8 maybe_flag); uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
/* This is used to construct degenerate SEL_ARGS like ALWAYS, IMPOSSIBLE, etc */ /* This is used to construct degenerate SEL_ARGS like ALWAYS, IMPOSSIBLE, etc */
SEL_ARG(enum Type type_arg) SEL_ARG(enum Type type_arg)
:min_flag(0), is_ascending(false), :min_flag(0),
max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/, max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/,
elements(1),use_count(1),left(0),right(0), elements(1),use_count(1),left(0),right(0),
next_key_part(0), color(BLACK), type(type_arg), weight(1) next_key_part(0), color(BLACK), type(type_arg), weight(1)
@ -447,20 +442,20 @@ public:
{ {
new_max=arg->max_value; flag_max=arg->max_flag; new_max=arg->max_value; flag_max=arg->max_flag;
} }
return new (thd->mem_root) SEL_ARG(field, part, is_ascending, return new (thd->mem_root) SEL_ARG(field, part,
new_min, new_max, flag_min, new_min, new_max, flag_min,
flag_max, flag_max,
MY_TEST(maybe_flag && arg->maybe_flag)); MY_TEST(maybe_flag && arg->maybe_flag));
} }
SEL_ARG *clone_first(SEL_ARG *arg) SEL_ARG *clone_first(SEL_ARG *arg)
{ // min <= X < arg->min { // min <= X < arg->min
return new SEL_ARG(field, part, is_ascending, min_value, arg->min_value, return new SEL_ARG(field, part, min_value, arg->min_value,
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX, min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
maybe_flag | arg->maybe_flag); maybe_flag | arg->maybe_flag);
} }
SEL_ARG *clone_last(SEL_ARG *arg) SEL_ARG *clone_last(SEL_ARG *arg)
{ // min <= X <= key_max { // min <= X <= key_max
return new SEL_ARG(field, part, is_ascending, min_value, arg->max_value, return new SEL_ARG(field, part, min_value, arg->max_value,
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag); min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
} }
SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next); SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);
@ -544,44 +539,45 @@ public:
} }
/* Save minimum and maximum, taking index order into account */ /* Save minimum and maximum, taking index order into account */
void store_min_max(uint length, void store_min_max(KEY_PART *kp,
uint length,
uchar **min_key, uint min_flag, uchar **min_key, uint min_flag,
uchar **max_key, uint max_flag, uchar **max_key, uint max_flag,
int *min_part, int *max_part) int *min_part, int *max_part)
{ {
if (is_ascending) { if (kp[part].flag & HA_REVERSE_SORT) {
*min_part += store_min(length, min_key, min_flag);
*max_part += store_max(length, max_key, max_flag);
} else {
*max_part += store_min(length, max_key, min_flag); *max_part += store_min(length, max_key, min_flag);
*min_part += store_max(length, min_key, max_flag); *min_part += store_max(length, min_key, max_flag);
} else {
*min_part += store_min(length, min_key, min_flag);
*max_part += store_max(length, max_key, max_flag);
} }
} }
/* /*
Get the flag for range's starting endpoint, taking index order into Get the flag for range's starting endpoint, taking index order into
account. account.
*/ */
uint get_min_flag() uint get_min_flag(KEY_PART *kp)
{ {
return (is_ascending ? min_flag : invert_max_flag(max_flag)); return (kp[part].flag & HA_REVERSE_SORT)? invert_max_flag(max_flag) : min_flag;
} }
/* /*
Get the flag for range's starting endpoint, taking index order into Get the flag for range's starting endpoint, taking index order into
account. account.
*/ */
uint get_max_flag() uint get_max_flag(KEY_PART *kp)
{ {
return (is_ascending ? max_flag : invert_min_flag(min_flag)); return (kp[part].flag & HA_REVERSE_SORT)? invert_min_flag(min_flag) : max_flag ;
} }
/* Get the previous interval, taking index order into account */ /* Get the previous interval, taking index order into account */
inline SEL_ARG* index_order_prev() inline SEL_ARG* index_order_prev(KEY_PART *kp)
{ {
return is_ascending? prev: next; return (kp[part].flag & HA_REVERSE_SORT)? next : prev;
} }
/* Get the next interval, taking index order into account */ /* Get the next interval, taking index order into account */
inline SEL_ARG* index_order_next() inline SEL_ARG* index_order_next(KEY_PART *kp)
{ {
return is_ascending? next: prev; return (kp[part].flag & HA_REVERSE_SORT)? prev : next;
} }
/* /*
@ -621,7 +617,7 @@ public:
nkp->part == key_tree->part+1 && nkp->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN))) !(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
{ {
const bool asc = nkp->is_ascending; const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
if (start_key == asc) if (start_key == asc)
{ {
res+= nkp->store_min_key(key, range_key, range_key_flag, last_part, res+= nkp->store_min_key(key, range_key, range_key_flag, last_part,
@ -657,7 +653,7 @@ public:
nkp->part == key_tree->part+1 && nkp->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX))) !(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
{ {
const bool asc = nkp->is_ascending; const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
if ((!start_key && asc) || (start_key && !asc)) if ((!start_key && asc) || (start_key && !asc))
{ {
res += nkp->store_max_key(key, range_key, range_key_flag, last_part, res += nkp->store_max_key(key, range_key, range_key_flag, last_part,
@ -785,9 +781,6 @@ public:
Range Optimizer handles this as follows: Range Optimizer handles this as follows:
The SEL_ARG object has SEL_ARG::is_ascending which specifies whether the
keypart is ascending.
Other than that, the SEL_ARG graph is built without any regard to DESC Other than that, the SEL_ARG graph is built without any regard to DESC
keyparts. keyparts.
@ -799,7 +792,7 @@ public:
kp1 BETWEEN 10 and 20 (RANGE-1) kp1 BETWEEN 10 and 20 (RANGE-1)
the SEL_ARG will have min_value=10, max_value=20, is_ascending=false. the SEL_ARG will have min_value=10, max_value=20
The ordering of key parts is taken into account when SEL_ARG graph is The ordering of key parts is taken into account when SEL_ARG graph is
linearized to ranges, in sel_arg_range_seq_next() and get_quick_keys(). linearized to ranges, in sel_arg_range_seq_next() and get_quick_keys().
@ -850,7 +843,7 @@ class SEL_ARG_IMPOSSIBLE: public SEL_ARG
{ {
public: public:
SEL_ARG_IMPOSSIBLE(Field *field) SEL_ARG_IMPOSSIBLE(Field *field)
:SEL_ARG(field, false, 0, 0) :SEL_ARG(field, 0, 0)
{ {
type= SEL_ARG::IMPOSSIBLE; type= SEL_ARG::IMPOSSIBLE;
} }

View File

@ -47,6 +47,7 @@ typedef struct st_sel_arg_range_seq
uint keyno; /* index of used tree in SEL_TREE structure */ uint keyno; /* index of used tree in SEL_TREE structure */
uint real_keyno; /* Number of the index in tables */ uint real_keyno; /* Number of the index in tables */
PARAM *param; PARAM *param;
KEY_PART *key_parts;
SEL_ARG *start; /* Root node of the traversed SEL_ARG* graph */ SEL_ARG *start; /* Root node of the traversed SEL_ARG* graph */
RANGE_SEQ_ENTRY stack[MAX_REF_PARTS]; RANGE_SEQ_ENTRY stack[MAX_REF_PARTS];
@ -106,13 +107,13 @@ static void step_down_to(SEL_ARG_RANGE_SEQ *arg, SEL_ARG *key_tree)
uint16 stor_length= arg->param->key[arg->keyno][key_tree->part].store_length; uint16 stor_length= arg->param->key[arg->keyno][key_tree->part].store_length;
key_tree->store_min_max(stor_length, key_tree->store_min_max(arg->key_parts, stor_length,
&cur->min_key, prev->min_key_flag, &cur->min_key, prev->min_key_flag,
&cur->max_key, prev->max_key_flag, &cur->max_key, prev->max_key_flag,
&cur->min_key_parts, &cur->max_key_parts); &cur->min_key_parts, &cur->max_key_parts);
cur->min_key_flag= prev->min_key_flag | key_tree->get_min_flag(); cur->min_key_flag= prev->min_key_flag | key_tree->get_min_flag(arg->key_parts);
cur->max_key_flag= prev->max_key_flag | key_tree->get_max_flag(); cur->max_key_flag= prev->max_key_flag | key_tree->get_max_flag(arg->key_parts);
if (key_tree->is_null_interval()) if (key_tree->is_null_interval())
cur->min_key_flag |= NULL_RANGE; cur->min_key_flag |= NULL_RANGE;
@ -166,12 +167,13 @@ bool sel_arg_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
/* Ok, we're at some "full tuple" position in the tree */ /* Ok, we're at some "full tuple" position in the tree */
/* Step down if we can */ /* Step down if we can */
if (key_tree->index_order_next() && key_tree->index_order_next() != &null_element) if (key_tree->index_order_next(seq->key_parts) &&
key_tree->index_order_next(seq->key_parts) != &null_element)
{ {
//step down; (update the tuple, we'll step right and stay there) //step down; (update the tuple, we'll step right and stay there)
seq->i--; seq->i--;
step_down_to(seq, key_tree->index_order_next()); step_down_to(seq, key_tree->index_order_next(seq->key_parts));
key_tree= key_tree->index_order_next(); key_tree= key_tree->index_order_next(seq->key_parts);
seq->is_ror_scan= FALSE; seq->is_ror_scan= FALSE;
goto walk_right_n_up; goto walk_right_n_up;
} }
@ -186,12 +188,13 @@ bool sel_arg_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
key_tree= seq->stack[seq->i].key_tree; key_tree= seq->stack[seq->i].key_tree;
/* Step down if we can */ /* Step down if we can */
if (key_tree->index_order_next() && key_tree->index_order_next() != &null_element) if (key_tree->index_order_next(seq->key_parts) &&
key_tree->index_order_next(seq->key_parts) != &null_element)
{ {
// Step down; update the tuple // Step down; update the tuple
seq->i--; seq->i--;
step_down_to(seq, key_tree->index_order_next()); step_down_to(seq, key_tree->index_order_next(seq->key_parts));
key_tree= key_tree->index_order_next(); key_tree= key_tree->index_order_next(seq->key_parts);
break; break;
} }
} }
@ -230,11 +233,11 @@ walk_right_n_up:
key_tree= key_tree->next_key_part; key_tree= key_tree->next_key_part;
walk_up_n_right: walk_up_n_right:
while (key_tree->index_order_prev() && while (key_tree->index_order_prev(seq->key_parts) &&
key_tree->index_order_prev() != &null_element) key_tree->index_order_prev(seq->key_parts) != &null_element)
{ {
/* Step up */ /* Step up */
key_tree= key_tree->index_order_prev(); key_tree= key_tree->index_order_prev(seq->key_parts);
} }
step_down_to(seq, key_tree); step_down_to(seq, key_tree);
} }